THERMAL STRESS PROJECTION BASED ON TEMPERATURE-HUMIDITY INDEX (THI) UNDER CLIMATE CHANGE SCENARIO

Authors

  • Iis Widya Harmoko Badan Meterologi Klimatologi dan Geofesikia Stasiun Klimatologi Semarang, Jl. Siliwangi No. 291, Semarang
  • Rochdi Wasono Jurusan Statistika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Muhammadiyah Semarang, Jl. Kedungmundu No.18, Semarang
  • Tiani Wahyu Utami Jurusan Statistika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Muhammadiyah Semarang, Jl. Kedungmundu No.18, Semarang
  • Fatkhurokhman Fauzi Department of Statistics, Universitas Muhammadiyah Semarang
  • Iqbal Kharisudin

DOI:

https://doi.org/10.31172/jmg.v24i1.867

Keywords:

Bias Correction, Climate Change, Thermal Stress, Temperature-Humidity Index (THI)

Abstract

The degradation of green open spaces and the phenomenon of deforestation in Indonesia has increased discomfort in the region. Furthermore, if allowed to continue, the increase in temperature caused by greenhouse gases worsens the situation. Increased temperature and reduced air humidity are related to thermal stress, affecting human comfort and health. Thermal stress is measured based on the Temperature Humidity Index (THI), which calculates temperature and relative humidity variables. This study analyses THI projections under climate change scenarios RCP4.5 and RCP8.5. This study uses statistical downscaling and bias correction of Quantile Delta Mapping (QDM) to equalize the local climate. This study is divided into four 20-year periods from 2021 to 2100 to evaluate THI changes in future projections. Based on the study results, it is known that from 2041-2060, several big cities in Indonesia experienced an increase in THI and were included in the category of 50% of the population feeling uncomfortable. THI increased in the third and fourth periods. Areas that experienced a significant increase in THI were urban areas that lacked green open land and were densely populated. Surabaya City and Madura Island are the areas with the highest THI index.

Author Biography

Fatkhurokhman Fauzi, Department of Statistics, Universitas Muhammadiyah Semarang

Department of Statistics

References

M. A. K. Mrs. Archana K, “Impact of Deforestation on Climate Change,” IOSR Journal of Environmental Science, Toxicology and Food Technology, vol. 4, no. 2, pp. 24–28, 2013, doi: 10.9790/2402-0422428.

Intergovernmental Panel on Climate, Global Warming of 1.5°C an IPCC special report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change,. Switzerland: IPCC, 2018.

Supari, F. Tangang, L. Juneng, and E. Aldrian, “Observed changes in extreme temperature and precipitation over Indonesia,” International Journal of Climatology, vol. 37, no. 4, pp. 1979–1997, 2017, doi: 10.1002/joc.4829.

E. C. Thom, “The Discomfort Index,” Weatherwise, vol. 12, no. 2, pp. 57–61, 1959, doi: 10.1080/00431672.1959.9926960.

S. Nieuwolt and others, Tropical climatology. An introduction to the climates of the low latitudes. John Wiley and Sons, 1977.

G. M. Flato, “Earth system models: An overview,” Wiley Interdisciplinary Reviews: Climate Change, vol. 2, no. 6, pp. 783–800, 2011, doi: 10.1002/wcc.148.

A. Anav, G. Murray-Tortarolo, P. Friedlingstein, S. Sitch, S. Piao, and Z. Zhu, “Evaluation of land surface models in reproducing satellite derived leaf area index over the high-latitude northern hemisphere. Part II: Earth system models,” Remote Sensing, vol. 5, no. 8, pp. 3637–3661, 2013, doi: 10.3390/rs5083637.

R. H. Moss et al., “The next generation of scenarios for climate change research and assessment,” Nature, vol. 463, no. 7282, pp. 747–756, 2010, doi: 10.1038/nature08823.

S. Femmy Marsitha B, “PROYEKSI KESESUAIAN AGROKLIMAT TANAMAN PADI BERDASARKAN SKENARIO REPRESENTATIVE CONCENTRATION PATHWAYS (RCP)4.5 DAN RCP8.5 DI PROVINSI JAWA TIMUR,” Jurnal Meteorologi Klimatologi dan Geofisika, vol. 4, no. 3, pp. 1–9, 2017.

C. H. O. Lallo, J. Cohen, D. Rankine, M. Taylor, J. Cambell, and T. Stephenson, “Characterizing heat stress on livestock using the temperature humidity index (THI)—prospects for a warmer Caribbean,” Regional Environmental Change, vol. 18, no. 8, pp. 2329–2340, 2018, doi: 10.1007/s10113-018-1359-x.

A. N. Yassen, W. H. Nam, and E. M. Hong, “Impact of climate change on reference evapotranspiration in Egypt,” Catena, vol. 194, no. 1, pp. 1059–1064, 2020, doi: 10.1016/j.catena.2020.104711.

A. H. Baghanam, M. Eslahi, A. Sheikhbabaei, and A. J. Seifi, “Assessing the impact of climate change over the northwest of Iran: an overview of statistical downscaling methods,” Theoretical and Applied Climatology, vol. 141, no. 3–4, pp. 1135–1150, 2020, doi: 10.1007/s00704-020-03271-8.

D. Araya-Osses, A. Casanueva, C. Román-Figueroa, J. M. Uribe, and M. Paneque, “Climate change projections of temperature and precipitation in Chile based on statistical downscaling,” Climate Dynamics, vol. 54, no. 9–10, pp. 4309–4330, 2020, doi: 10.1007/s00382-020-05231-4.

K. Farzan et al., “Statistical downscaling and bias correction of climate model outputs for climate change impact assessment in the U . S . northeast,” Global and Planetary Change, vol. 100, pp. 320–332, 2013, doi: 10.1016/j.gloplacha.2012.11.003.

C. Piani, J. O. Haerter, and E. Coppola, “Statistical bias correction for daily precipitation in regional climate models over Europe,” pp. 187–192, 2010, doi: 10.1007/s00704-009-0134-9.

D. Maraun, “Bias Correction , Quantile Mapping , and Downscaling : Revisiting the Inflation Issue,” no. D, pp. 2137–2143, 2013, doi: 10.1175/JCLI-D-12-00821.1.

D. Jacob, “A note to the simulation of the annual and inter-annual variability of the water budget over the Baltic Sea drainage basin,” vol. 73, pp. 61–73, 2001.

A. J. Cannon, S. R. Sobie, and T. Q. Murdock, “Bias correction of GCM precipitation by quantile mapping: How well do methods preserve changes in quantiles and extremes?,” Journal of Climate, vol. 28, no. 17, pp. 6938–6959, 2015, doi: 10.1175/JCLI-D-14-00754.1.

A. M. Thomson et al., “RCP4.5: A pathway for stabilization of radiative forcing by 2100,” Climatic Change, vol. 109, no. 1, pp. 77–94, 2011, doi: 10.1007/s10584-011-0151-4.

K. Riahi et al., “RCP 8.5-A scenario of comparatively high greenhouse gas emissions,” Climatic Change, vol. 109, no. 1, pp. 33–57, 2011, doi: 10.1007/s10584-011-0149-y.

D. Ji et al., “Description and basic evaluation of Beijing Normal University Earth System Model (BNU-ESM) version 1,” Geoscientific Model Development, vol. 7, no. 5, pp. 2039–2064, 2014, doi: 10.5194/gmd-7-2039-2014.

H. Kuswanto, B. Kravitz, B. Miftahurrohmah, F. Fauzi, A. Sopahaluwaken, and J. Moore, “Impact of solar geoengineering on temperatures over the Indonesian Maritime Continent,” International Journal of Climatology, no. August 2020, pp. 1–20, 2021, doi: 10.1002/joc.7391.

M. M. Rienecker et al., “MERRA: NASA’s modern-era retrospective analysis for research and applications,” Journal of Climate, vol. 24, no. 14, pp. 3624–3648, 2011, doi: 10.1175/JCLI-D-11-00015.1.

A. J. Cannon, S. R. Sobie, and T. Q. Murdock, “Bias Correction of GCM Precipitation by Quantile Mapping : How Well Do Methods Preserve Changes in Quantiles and Extremes ?,” vol. 28, no. 17, pp. 6938–6959, 2015, doi: 10.1175/JCLI-D-14-00754.1.

R. K. Eentemeyer and R. D. Hunter, “Climatologically Aided Mapping of Daily Precipitation and Temperature,” pp. 1501–1510, 2005.

J. H. Heo, H. Ahn, J. Y. Shin, T. R. Kjeldsen, and C. Jeong, “Probability distributions for a quantile mapping technique for a bias correction of precipitation data: A case study to precipitation data under climate change,” Water (Switzerland), vol. 11, no. 7, 2019, doi: 10.3390/w11071475.

S. Effendy, A. Bey, A. F. M. Zain, and I. Santosa, “Peranan Ruang Terbuka Hijau Dalam Mengendalikan Suhu Udara Dan Urban Heat Island Wilayah Jabotabek,” J. Agromet Indonesia, vol. 20, no. 1, pp. 23–33, 2006.

B. M. Fiseha, A. Melesse, E. Romano, E. Volpi, and A. Fiori, “Statistical Downscaling of Precipitation and Temperature for the Upper Tiber Basin in Central Italy,” 2012.

D. H. Kang, D. H. Nam, S. J. Jeung, and B. S. Kim, “Impact assessment of flood damage in urban areas using rcp 8.5 climate change scenarios and building inventory,” Water (Switzerland), vol. 13, no. 6, pp. 1–22, 2021, doi: 10.3390/w13060756.

J. E. X. Rogi and J. Rombang, “PENGARUH TIPE TUTUPAN LAHAN TERHADAP IKLIM MIKRO DI KOTA BITUNG,” Agri-SosioEkonomi Unsrat, vol. 12, no. November, pp. 105–116, 2016.

R. H. Moss et al., “The next generation of scenarios for climate change research and assessment,” Nature, vol. 463, no. 7282, pp. 747–756, 2010, doi: 10.1038/nature08823.

T. Yuliawan and I. Handoko, “The Effect of Temperature Rise to Rice Crop Yield in Indonesia uses Shierary Rice Model with Geographical Information System (GIS) Feature,” Procedia Environmental Sciences, vol. 33, pp. 214–220, 2016, doi: 10.1016/j.proenv.2016.03.072.

M. Taherkhani, S. Vitousek, P. L. Barnard, N. Frazer, T. R. Anderson, and C. H. Fletcher, “Sea-level rise exponentially increases coastal flood frequency,” Scientific Reports, vol. 10, no. 1, pp. 1–17, 2020, doi: 10.1038/s41598-020-62188-4.

J. Bohmanova, I. Misztal, and J. B. Cole, “Temperature-humidity indices as indicators of milk production losses due to heat stress,” Journal of Dairy Science, vol. 90, no. 4, pp. 1947–1956, 2007, doi: 10.3168/jds.2006-513.

H. R. V. Qurrata A`yun Kartika, Rahmat Hidayat, “Perubahan Temperature Humidity Index (THI) di Pulau Jawa sejak 1981 hingga 2019,” Majalah Geografi Indonesia, vol. 35, no. 2, pp. 104–111, 2021.

H. Du, F. Zhou, W. Cai, Y. Cai, and Y. Xu, “Thermal and humidity effect of urban green spaces with different shapes: A case study of Shanghai, China,” International Journal of Environmental Research and Public Health, vol. 18, no. 11, 2021, doi: 10.3390/ijerph18115941.

S. Ramdhoni, S. B. Rushayati, and L. B. Prasetyo, “Open Green Space Development Priority Based on Distribution of air Temperature Change in Capital City of Indonesia, Jakarta,” in Procedia Environmental Sciences, 2016, vol. 33, pp. 204–213, doi: 10.1016/j.proenv.2016.03.071.

Downloads

Published

2023-08-29 — Updated on 2024-02-02

Versions

How to Cite

Harmoko, I. W., Wasono, R., Utami, T. W., Fauzi, F., & Kharisudin, I. (2024). THERMAL STRESS PROJECTION BASED ON TEMPERATURE-HUMIDITY INDEX (THI) UNDER CLIMATE CHANGE SCENARIO. Jurnal Meteorologi Dan Geofisika, 24(1), 65–73. https://doi.org/10.31172/jmg.v24i1.867 (Original work published August 29, 2023)

Issue

Section

Article