COMPARISON ANALYSIS OF HIMAWARI 8, CHIRPS AND GSMaP DATA TO DETECT RAIN IN INDONESIA

Authors

  • Rido Dwi Ismanto Organisasi Riset Penerbangan dan Antariksa BRIN
  • Indah Prasasti OR Penerbangan dan Antariksa BRIN
  • Hana Listi Fitriana OR Penerbangan dan Antariksa BRIN

DOI:

https://doi.org/10.31172/jmg.v24i1.863

Keywords:

rainfall detection, Himawari 8 satellite, CHIRPS, GSMaP, contingency table

Abstract

The need for rainfall data, especially for areas where the number of observation stations is not very close, is very important for local climate analysis activities. This data need can be met, one of which is from remote sensing data, such as Himawari 8. The Himawari 8 rainfall data are data derived using the INSAT Multi-Spectral Rainfall Algorithm (IMSRA) method based on the infrared channel on the Himawari 8 satellite. However, research on the IMSRA method was carried out using a case study of a region in India. Thus, validation is needed to determine the ability of Himawari 8 rainfall data to detect rain in Indonesia. The data used for comparison are CHIRPS and GSMaP rainfall data. In addition, BMKG rainfall data are used as benchmark data. The technique used for validation is using the Contingency Table method. The results of the validation show that the rain detection ability for Himawari 8 rainfall data is relatively good, namely 66% for 2019 and 85% for 2020. In addition, the ability to detect rain using Himawari 8 rainfall data is quite good compared to the ability to detect rain using CHIRPS rainfall data and GSMaP rainfall data.

References

H. HIROSE, S. SHIGE, M. K. YAMAMOTO, and A. HIGUCHI, “High Temporal Rainfall Estimations from Himawari-8 Multiband Observations Using the Random-Forest Machine-Learning Method,” J. Meteorol. Soc. Japan. Ser. II, vol. 97, no. 3, pp. 689–710, 2019, doi: 10.2151/jmsj.2019-040.

J. Bühl et al., “Remote Sensing,” Meteorol. Monogr., vol. 58, pp. 10.1-10.21, Jan. 2017, doi: 10.1175/AMSMONOGRAPHS-D-16-0015.1.

N. Ayasha, “A COMPARISON OF RAINFALL ESTIMATION USING HIMAWARI-8 SATELLITE DATA IN DIFFERENT INDONESIAN TOPOGRAPHIES,” Int. J. Remote Sens. Earth Sci., vol. 17, no. 2, p. 189, Mar. 2021, doi: 10.30536/j.ijreses.2020.v17.a3441.

W. F. Krajewski, G. J. Ciach, and E. Habib, “An analysis of small-scale rainfall variability in different climatic regimes,” Hydrol. Sci. J., vol. 48, no. 2, pp. 151–162, Apr. 2003, doi: 10.1623/hysj.48.2.151.44694.

J. Guo et al., “Aerosol-induced changes in the vertical structure of precipitation: a perspective of TRMM precipitation radar,” Atmos. Chem. Phys., vol. 18, no. 18, pp. 13329–13343, Sep. 2018, doi: 10.5194/acp-18-13329-2018.

K. BESSHO et al., “An Introduction to Himawari-8/9— Japan’s New-Generation Geostationary Meteorological Satellites,” J. Meteorol. Soc. Japan. Ser. II, vol. 94, no. 2, pp. 151–183, 2016, doi: 10.2151/jmsj.2016-009.

B. J. Sohn, G.-H. Ryu, H.-J. Song, and M.-L. Ou, “Characteristic Features of Warm-Type Rain Producing Heavy Rainfall over the Korean Peninsula Inferred from TRMM Measurements,” Mon. Weather Rev., vol. 141, no. 11, pp. 3873–3888, Nov. 2013, doi: 10.1175/MWR-D-13-00075.1.

P. Suwarsono, A. D. S. Kusumaning, and M. Kartasamita, “Penentuan Hubungan Antara Suhu Kecerahan dangan MTSAT dengan Curah Hujan Data QMORPH,” J. Penginderaan Jauh, vol. 6, no. 1, pp. 32–42, 2009, [Online]. Available: http://jurnal.lapan.go.id/index.php/jurnal_inderaja/article/view/1184/1062.

S. Upadhyaya and R. Ramsankaran, “Review of satellite remote sensing data based rainfall estimation methods,” Hydro 2013 Int., no. December, pp. 1–16, 2013.

N. Alfuadi, “Interkomparasi Teknik Estimasi Curah Hujan,” Pros. SNSA, pp. 151–162, 2016.

T. Dinku, P. Ceccato, E. Grover‐Kopec, M. Lemma, S. J. Connor, and C. F. Ropelewski, “Validation of satellite rainfall products over East Africa’s complex topography,” Int. J. Remote Sens., vol. 28, no. 7, pp. 1503–1526, Apr. 2007, doi: 10.1080/01431160600954688.

S. Prakash, C. Mahesh, R. M. Gairola, and P. K. Pal, “Estimation of Indian summer monsoon rainfall using Kalpana-1 VHRR data and its validation using rain gauge and GPCP data,” Meteorol. Atmos. Phys., vol. 110, no. 1–2, pp. 45–57, Dec. 2010, doi: 10.1007/s00703-010-0106-8.

E. Sharifi, R. Steinacker, and B. Saghafian, “Assessment of GPM-IMERG and other precipitation products against gauge data under different topographic and climatic conditions in Iran: Preliminary results,” Remote Sens., vol. 8, no. 2, 2016, doi: 10.3390/rs8020135.

J. B. C. dos Reis, C. D. Rennó, and E. S. S. Lopes, “Validation of satellite rainfall products over a mountainouswatershed in a humid subtropical climate region of Brazil,” Remote Sens., vol. 9, no. 12, 2017, doi: 10.3390/rs9121240.

A. Indradjad, B. A. M. Pratiknyo, and H. Gunawan, “Study of Development and Upgrading Remote Sensing Ground Station System for Receiving Satellite Himawari 8 in LAPAN Pekayon,” 2015.

A. K. Mishra, R. M. Gairola, A. K. Varma, and V. K. Agarwal, “Improved rainfall estimation over the Indian region using satellite infrared technique,” Adv. Sp. Res., vol. 48, no. 1, pp. 49–55, Jul. 2011, doi: 10.1016/j.asr.2011.02.016.

Downloads

Published

2023-08-28 — Updated on 2024-02-02

Versions

How to Cite

Ismanto, R. D., Prasasti, I., & Fitriana, H. L. (2024). COMPARISON ANALYSIS OF HIMAWARI 8, CHIRPS AND GSMaP DATA TO DETECT RAIN IN INDONESIA. Jurnal Meteorologi Dan Geofisika, 24(1), 9–17. https://doi.org/10.31172/jmg.v24i1.863 (Original work published August 28, 2023)

Issue

Section

Article