DIGITAL ELEVATION MODEL ALTERNATIVES ASSESSMENT FOR DEFORMATION ANALYSIS PURPOSES USING GNSS AND INSAR

Authors

  • Dina Anggreni Sarsito Geodesy Research Group, Faculty of Earth Sciences and Technology, Institut Teknologi Bandung
  • Brian Bramanto Geodesy Research Group, Faculty of Earth Sciences and Technology, Institut Teknologi Bandung http://orcid.org/0000-0002-2480-0243

DOI:

https://doi.org/10.31172/jmg.v23i1.845

Keywords:

Digital elevation model, EGM2008, Accuracy assessment, leveling data

Abstract

Digital Elevation Model (DEM) is the starting point in the analysis performed to explain the deformation pattern changes from the Earth's surface. The estimated value of deformation based on point-wise GPS and InSAR data with a better spatial resolution must be defined in a reference frame system that reflects the phenomenon of deformation of the real physical world, e.g., orthometric height for the vertical component. Therefore, this study aims to provide alternative DEM models based on a suitable combination between the Global Geopotential Model of Earth Geopotential Model 2008 (EGM2008) and global terrain models, providing position changes with respect to the orthometric height. The alternative DEM models are (i) the global elevation model of ETOPO1 (DEM1), (ii) the modified global elevation model of SRTM30_PLUS (DEM2), and (iii) the regional elevation model of DEMNAS (DEM3). These alternative models comply with each other for the land areas with mean difference values lower than 1 meter. While for the ocean areas, we found that DEM1 and DEM2 have apparent differences due to the different types of data used. However, a similar assessment could not be performed for DEM3 as it only covers the land areas. Additionally, we compared the orthometric height from these terrain models with leveling observations for the coinciding locations. DEM3 achieves the highest accuracy with the estimated standard deviation of 11.2745 meters and is followed by DEM2 and DEM1 with the respective standard deviation of 29.4498 and 37.6872 meters. We found that these models can be used as a starting position determination for horizontal and vertical deformation analysis.

References

S. Cetin, C. Aydin, and U. Dogan, “Comparing GPS positioning errors derived from GAMIT/GLOBK and Bernese GNSS software Comparing GPS positioning errors derived from GAMIT / GLOBK and Bernese GNSS software packages: A case study in CORS-TR in Turkey,” Surv. Rev., vol. 51, no. 369, 2019, doi: 10.1080/00396265.2018.1505349.

A. Klos, J. Bogusz, M. Figurski, and W. Kosek, “On the Handling of Outliers in the GNSS Time Series by Means of the Noise and Probability Analysis,” in IAG 150 Years, C. Rizos and P. Willis, Eds. Springer International Publishing, 2016, pp. 657–664.

F. Cigna and D. Tapete, “Present-day land subsidence rates, surface faulting hazard and risk in Mexico City with 2014–2020 Sentinel-1 IW InSAR,” Remote Sens. Environ., vol. 253, no. 112161, 2021, doi: 10.1016/j.rse.2020.112161.

H. Ren and X. Feng, “Calculating vertical deformation using a single InSAR pair based on singular value decomposition in mining areas,” Int. J. Appl. Earth Obs., vol. 92, no. 102115, 2020, doi: 10.1016/j.jag.2020.102115.

S. Yalvac, “Validating InSAR-SBAS results by means of different GNSS analysis techniques in medium- and high-grade deformation areas,” Environ. Monit. Assess., vol. 192, no. 120, 2020, doi: 10.1007/s10661-019-8009-8.

A. Aobpaet, M. C. Cuenca, and A. Hooper, “InSAR time-series analysis of land subsidence in Bangkok, Thailand,” Int. J. Remote Sens., vol. 34, no. 8, pp. 2969–2982, 2013, doi: 10.1080/01431161.2012.756596.

E. Sinem Ince et al., “ICGEM – 15 years of successful collection and distribution of global gravitational models, associated services, and future plans,” Earth Syst. Sci. Data, vol. 11, pp. 647–674, 2019, doi: 10.5194/essd-11-647-2019.

A. Üstün, R. A. Abbak, and E. Zeray Öztürk, “Height biases of SRTM DEM related to EGM96: from a global perspective to regional practice,” Surv. Rev., vol. 50, no. 358, pp. 26–35, Jan. 2018, doi: 10.1080/00396265.2016.1218159.

K. B. Kim, H. S. Yun, and H. J. Choi, “Accuracy Evaluation of Geoid Heights in the National Control Points of South Korea Using High-Degree Geopotential Model,” Appl. Sci., vol. 10, no. 1466, Feb. 2020, doi: 10.3390/app10041466.

N. S. Saray and N. K. Ghazal, “Evaluation of Global Gravitational Models Based on DGPS/leveling Data over Baghdad University (IRAQ),” J. Phys. Conf. Ser., vol. 1804, no. 012044, 2021, doi: 10.1088/1742-6596/1804/1/012044.

C. Hirt, U. Marti, B. Bürki, and W. E. Featherstone, “Assessment of EGM2008 in Europe using accurate astrogeodetic vertical deflections and omission error estimates from SRTM/DTM2006.0 residual terrain model data,” J. Geophys. Res., vol. 115, no. B10404, Oct. 2010, doi: 10.1029/2009JB007057.

C. Förste et al., “Evaluation of EGM2008 by comparison with other recent global gravity field models,” Newton’s Bull., no. 4, pp. 26–37, 2009, [Online]. Available: http://gfzpublic.gfz-potsdam.de/pubman/item/escidoc:239494:1/component/escidoc:239493/13866.pdf.

Z. Li, Q. Zhu, and C. Gold, Digital terrain modeling: Principles and methodology. CRC Press, 2005.

A. M. Pahlevi, I. Sofian, D. Pangastuti, and A. B. Wijanarto, “Updating Model Geoid Indonesia,” Semin. Nas. Geomatika, vol. 3, p. 761, 2019, doi: 10.24895/sng.2018.3-0.1063.

B. Hofmann-Wellenhof and H. Moritz, Physical Geodesy. Vienna: Springer, 2005.

W. Torge, Geodesy, 2nd ed. Walter de Gruyter, 1991.

C. Amante and B. W. Eakins, “ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis,” 2009. doi: 10.7289/V5C8276M.

J. J. Becker et al., “Global Bathymetry and Elevation Data at 30 Arc Seconds Resolution: SRTM30_PLUS,” Mar. Geod., vol. 32, no. 4, pp. 355–371, 2009, doi: 10.1080/01490410903297766.

BIG, “DEMNAS,” 2018. https://tanahair.indonesia.go.id/demnas/#/ (accessed Dec. 19, 2021).

P. Wessel et al., “The Generic Mapping Tools Version 6,” Geochemistry, Geophys. Geosystems, vol. 20, pp. 5556–5564, 2019, doi: 10.1029/2019GC008515.

F. G. Lemoine et al., “The Development of the Joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) Geopotential Model EGM96,” 1997. doi: 10.1007/978-3-662-03482-8_62.

N. K. Pavlis, S. A. Holmes, S. C. Kenyon, and J. K. Factor, “The development and evaluation of the Earth Gravitational Model 2008 (EGM2008),” J. Geophys. Res., vol. 117, no. B04406, pp. 1–38, 2012, doi: 10.1029/2011JB008916.

Downloads

Published

2022-02-18

How to Cite

Sarsito, D. A., & Bramanto, B. (2022). DIGITAL ELEVATION MODEL ALTERNATIVES ASSESSMENT FOR DEFORMATION ANALYSIS PURPOSES USING GNSS AND INSAR. Jurnal Meteorologi Dan Geofisika, 23(1), 29–37. https://doi.org/10.31172/jmg.v23i1.845

Issue

Section

Article