IDENTIFICATION OF TROPICAL SQUALL LINE USING INFRARED CHANNEL HIMAWARI-8 SATELLITE IMAGERY (CASE STUDY OF 6-7 DECEMBER 2020 IN THE INDIAN OCEAN)

Authors

  • Nurul Izzah Fitria State College of Meteorology, Climatology, and Geophysics (STMKG)
  • Novvria Sagita State College of Meteorology, Climatology, and Geophysics (STMKG)
  • Arnelia Indah Cahyani State College of Meteorology, Climatology, and Geophysics (STMKG)

DOI:

https://doi.org/10.31172/jmg.v23i3.808

Keywords:

himawari, tropical squall line, mesoscale convective vortices

Abstract

Tropical squall line is a linear type of Mesoscale Convective Systems (MCS) phenomenon. On December 6-7, 2020, the Infrared (IR1) Himawari-8 satellite image in the Indian Ocean of Indonesian region, shows a cloud line identified as the tropical squall line. This study aims to identify the characteristics of the tropical squall line phenomenon that occurs in the Indian Ocean south of West Java using Himawari-8 Infrared (IR1) satellite imagery. Satellite image data is processed using an algorithm adapted to the MCC Maddox 1980 criteria. Furthermore, an objective analysis is carried out on the data based on the criteria from previous studies. The result shows that the tropical squall occurred for 19 hours with the initial type of tropical squall formation as intersecting convective band. In the mature stage, the trailing stratiform region and convective line develops an asymmetric pattern and shows a vortex (Mesoscale Convective Vortices) that forms inside the stratiform region. The result of rainfall distribution using the GSMaP model shows a category of heavy rain with rainfall in tropical squall areas exceeding 10 mm per hour.

Author Biographies

Nurul Izzah Fitria, State College of Meteorology, Climatology, and Geophysics (STMKG)

Department of Meteorology

Novvria Sagita, State College of Meteorology, Climatology, and Geophysics (STMKG)

Department of Meteorology

Arnelia Indah Cahyani, State College of Meteorology, Climatology, and Geophysics (STMKG)

Department of Meteorology

References

R. A. Houze, “Cloud dynamics,” Cloud Dyn., 1993, doi: 10.1016/0377-0265(87)90017-0.

R. A. Maddox, “Meoscale Convective Complexes,” Bull. Am. Meteorol. Soc., 1980, doi: 10.1175/1520-0477(1980)061<1374:mcc>2.0.co;2.

C. A. Leary and R. A. Houze, “The structure and evolution of convection in a tropical cloud cluster.,” J. Atmos. Sci., 1979, doi: 10.1175/1520-0469(1979)036<0437:TSAEOC>2.0.CO;2.

R. A. Houze, “Structure and Dynamics of a Tropical Squall–Line System,” Mon. Weather Rev., 1977, doi: 10.1175/1520-0493(1977)105<1540:sadoat>2.0.co;2.

R. A. Houze, B. F. Smull, and P. Dodge, “Mesoscale organization of springtime rainstorms in Oklahoma,” Mon. Weather Rev., 1990, doi: 10.1175/1520-0493(1990)118<0613:MOOSRI>2.0.CO;2.

S. M. Loehrer and R. H. Johnson, “Surface Pressure and Precipitation Life Cycle Characteristics of PRE-STORM Mesoscale Convective Systems,” Mon. Weather Rev., 1995, doi: 10.1175/1520-0493(1995)123<0600:spaplc>2.0.co;2.

E. R. Hilgendorf and R. H. Johnson, “A study of the evolution of mesoscale convective systems using WSR-88D data,” Weather Forecast., 1998, doi: 10.1175/1520-0434(1998)013<0437:ASOTEO>2.0.CO;2.

W. C. Skamarock, M. L. Weisman, and J. B. Klemp, “Three-Dimensional Evolution of Simulated Long-Lived Squall Lines,” J. Atmos. Sci., 1994, doi: 10.1175/1520-0469(1994)051<2563:tdeosl>2.0.co;2.

D. L. Bartels and R. A. Maddox, “Midlevel cyclonic vortices generated by mesoscale convective systems,” Mon. Weather Rev., 1991, doi: 10.1175/1520-0493(1991)119<0104:MCVGBM>2.0.CO;2.

E. C. Johnston, “Mesoscale Vorticity Centers Induced by Mesoscale Convective Complexes,” University of Wisconsin, 1981.

A. M. Hidayat, U. Efendi, H. N. Rahmadini, and I. R. Nugraheni, “The Characteristics of squall line over Indonesia and its vicinity based on Himawari-8 satellite imagery and radar data interpretation,” 2019, doi: 10.1088/1755-1315/303/1/012059.

D. Septiadi and Y. N. Septiadi, “Identifikasi Mesoscale Convective Complex (MCC) Dan Dampaknya Terhadap Curah Hujan Di Benua Maritim Indonesia (BMI) Sepanjang Tahun 2018,” J. Meteorol. dan Geofis., vol. 20, no. 2, p. 73, 2020, doi: 10.31172/jmg.v20i2.645.

I. F. P. Perdana, Y. I. Rismana, F. A. Prasetya, and A. Mulsandi, “Studi Kejadian Mesoscale Convective Complex (MCC) Di Wilayah Papua Bagian Selatan Pada 9-10 Mei 2018,” J. Meteorol. Klimatologi dan Geofis., vol. 6, no. 1, pp. 58–66, 2019, doi: 10.36754/jmkg.v6i1.115.

M. L. Weisman, “The genesis of severe, long-lived bow echoes,” J. Atmos. Sci., 1993, doi: 10.1175/1520-0469(1993)050<0645:TGOSLL>2.0.CO;2.

A. M. Society and E. Program, CORIOLIS EFFECT: BECAUSE THE EARTH TURNS TREACHER’S GUIDE. New York: American Meteorological Society, 2012.

BMKG, “Probabilistik Curah Hujan 24 Jam.” https://www.bmkg.go.id/cuaca/probabilistik-curah-hujan.bmkg# (accessed Jan. 08, 2021).

Downloads

Published

2022-06-14

How to Cite

Fitria, N. I., Sagita, N., & Cahyani, A. I. (2022). IDENTIFICATION OF TROPICAL SQUALL LINE USING INFRARED CHANNEL HIMAWARI-8 SATELLITE IMAGERY (CASE STUDY OF 6-7 DECEMBER 2020 IN THE INDIAN OCEAN). Jurnal Meteorologi Dan Geofisika, 23(3), 31–37. https://doi.org/10.31172/jmg.v23i3.808