PREDIKSI CURAH HUJAN BULANAN UNTUK PERINGATAN DINI LONGSOR DI BANJARNEGARA BAGIAN SELATAN DENGAN STATISTICAL DOWNSCALING DAN ENSEMBLE

Authors

  • Agus Safril Sekolah TInggi Meteorologi Klimatologi dan Geofisika http://orcid.org/0000-0001-8931-9306
  • Danang Eko Nuryanto Badan Meteorologi, Klimatologi dan Geofisika (BMKG)
  • Ni Luh C. Chevi Badan Meteorologi, Klimatologi dan Geofisika (BMKG)
  • Lisa Agustina Badan Meteorologi, Klimatologi dan Geofisika (BMKG)
  • Ki Agus Ardi Z Sekolah Tinggi Meteorologi Klimatologi dan Geofisika (STMKG)
  • Munawar Munawar Sekolah Tinggi Meteorologi Klimatologi dan Geofisika (STMKG)
  • Faturrahman Faturrahman Sekolah Tinggi Meteorologi Klimatologi dan Geofisika (STMKG)

DOI:

https://doi.org/10.31172/jmg.v21i2.698

Keywords:

Prediksi Curah hujan, Ensemble, Statistical Downscaling, Peringatan dini dan IKL

Abstract

Banjarnegara merupakan wilayah pegunungan sehingga sering terjadi longsor. Curah hujan sebagai salah satu parameter cuaca dengan kondisi tertentu mampu memicu terjadinya longsor. Keberadaan prediksi hujan sangat diperlukan untuk informasi berbasis dampak (Impact Based Forecasting) sebagai media untuk mitigasi bencana. Tujuan penelitian ini untuk membuat peringatan dini potensi bahaya longsor bulanan dengan input prediksi curah hujan bulanan (faktor dinamis) dengan metode ensemble dan statistical downscaling (SD). Prediktor yang digunakan terdiri dari CAPE, PW, U850 dan V850 dan SST sebagai parameter atmosfer yang terkait fisis dan dinamis dengan curah hujan. Indeks kerawanan longsor (IKL) yang digunakan sebagai faktor statis untuk peringatan dini bahaya longsor meliputi parameter curah hujan tahunan, kemiringan lereng dan penggunaan lahan. Hasil IKL selanjutnya di-overlay dengan prediksi curah hujan dengan tiga kategori persentil, yaitu Curah Hujan < P33 (persentil 33%) sebagai curah hujan rendah, P33-P66 (sedang) dan >P66 (tinggi). Hasil prediksi model ensemble menunjukkan pola curah hujan mengikuti pola musim kemarau dan awal musim hujan (curah hujan prediksi sesuai dengan observasi). Hasil korelasi yang tinggi menunjukkan bahwa model prediksi layak digunakan sebagai masukan model untuk peringatan dini longsor. Nilai IKL menunjukan bahwa Wilayah Kecamatan Banjarnegara dan Wanadadi merupakan lokasi paling rawan longsor (3,625) kemudian Wanadadi (3,188) dan agak rawan Mandiraja (2,875). Hasil prediksi curah hujan kemudian dioverlay dengan tingkat IKL digunakan sebagai indikator peringatan dini. Hasil validasi dengan data observasi menunjukkan bahwa peringatan dini longsor mempunyai akurasi yang cukup baik (informasi peringatan dini sesuai umumnya dengan kejadian longsor).

 

 

Banjarnegara is a mountainous region so landslides often occur. Rainfall is one of the weather parameters with certain conditions that can trigger landslides. The presence of rain predictions is really crucial for impact-based information (Impact Based Forecasting) as a mechanism for disaster reduction. The purpose of this paper is to make an early warning of potential monthly landslides with monthly rainfall prediction input (dynamic factors) with the ensemble and statistical downscaling (SD) methods. Predictors used consisted of CAPE, PW, U850, and V850, and SST as atmospheric parameters related to physical and dynamic rainfall. To build an early warning of landslide hazards, the landslide susceptibility index (IKL) was employed using annual rainfall, slope, and land use parameters. The results of IKL are then overlaid with predictions of rainfall with three percentile categories namely Rainfall <P33 (percentile 33%) as low rainfall, P33-P66 (moderate), and > P66 (high). The results of the ensemble model predictions show that rainfall patterns follow the pattern of the dry season and the beginning of the rainy season (predicted rainfall is in accordance with observations). The IKL value shows that the Districts of Banjarnegara and Wanadadi are the most prone to landslides (3,625) than Wanadadi (3,188) and somewhat vulnerable to Mandiraja (2,875). The rainfall prediction results are then overlaid with the IKL level producing an index as an early warning indicator. The results of the validation with observational data indicate that early warning landslides have quite a good accuracy (early warning information is generally in accordance with landslide events).

Author Biographies

Agus Safril, Sekolah TInggi Meteorologi Klimatologi dan Geofisika

Climatology Departement

Danang Eko Nuryanto, Badan Meteorologi, Klimatologi dan Geofisika (BMKG)

Pusat Penelitian dan Pengembangan BMKG

Ni Luh C. Chevi, Badan Meteorologi, Klimatologi dan Geofisika (BMKG)

Stasiun Klimatologi Lasiana

Lisa Agustina, Badan Meteorologi, Klimatologi dan Geofisika (BMKG)

Stasiun Klimatologi Kelas IV Sleman

References

Naryanto, H.S., Analisis Kejadian Bencana Tanah Longsor Tanggal 12 Desember 2014 Di Dusun Jemblung, Desa Sampang, Kecamatan Karangkobar, Kabupaten Banjarnegara, Provinsi Jawa Tengah, Jurnal Alami (ISSN : 2548-8635), Vol. 1, No. 1, 2017.

Badan Nasional Penanggulangan Bencana, (2007) Undang-Undang Republik Indonesia Nomor 24 Tahun 2007 Tentang Penanggulangan Bencana Warnadi. 2014.

Warnadi, W., Inventarisasi Daerah Rawan Longsor Banjarnegar Jawa Tengah Spatial, Wahana Komunikasi dan Informasi Geografi Vol 12 No 2, 2014.

D.H Bayuaji, A.K. Nugraha, A. Sukmono, Anlisis Penentuan Zonasi Risiko Bencana Tanah Longsor Berbasis Sistem Informasi Geografis (Studi Kasus: Kabupaten Banjarnegara), Jurnal Geodesi Universitas Diponegoro, Vol. 5, No. 1, 2016.

Badan Informasi Geografis (BIG), Peta Kejadian Longsor Desa Jemblung Karangkobar, 2014.

Alfi, R., Analisa Pengaruh Curah Hujan Terhadap Kejadian Tanah Longsor Di Ulu Klang Malaysia, Jurnal Iptek Vol. 4 No. 1, 2012.

Badan Meteorologi dan Geofisika (BMKG) Prakiraan Musim Hujan, 2019.

Manzanas, R., Assessing The Suitability of Statistical Downscaling Approaches for Seasonal Forecasting in Senegal Atmospheric Science Letters, pp 381–386, Vol 20, DOI: 10.1002/asl.767, 2017.

Wigena AH. 2006. Pemodelan Statistical Downscaling dengan Regresi Projection Pursuit untuk Peramalan Curah Hujan Bulanan di Indramayu [disertasi]. Bogor (ID): Sekolah Pascasarjana, Institut Pertanian Bogor.

Diaz, H.F., and R.S. Bradley (eds.), The Hadley Circulation: Present, Past and Future, Kluwer Academic Publisher pp. 173–202., 2005.

Holley, D.M., S.R. Dorling S.R, C.J. Steelea C.J, and N.A, Earla, Climatology of Convective Available Potential Energy in Great Britain, International Journal of. Climatolology. 34: 3811–3824 DOI: 10.1002/joc.3976,2014.

Nuryanto DE, R Satyaningsih, TA Nuraini, J Rizal, E Heriyanto, UA Linarka, A Sopaheluwakan. 2019. Evaluation of Planetary Boundary Layer (PBL) schemes in simulating heavy rainfall events over Central Java using high resolution WRF model, Proceedings of SPIE, 113720Q (2019), doi: 10.1117/12.2541817.

Nuryanto D. E., Y Fajariana, RP Pradana, R Anggraeni, IU Badri, A Sopaheluwakan. 2020. Modeling of Heavy Rainfall Triggering Landslide Using WRF Model, Agromet 34(1):55 – 65. doi: 10.29244/j.agromet.34.1.55-65.

Molteni, F., Buizza, R., Palmer, T. N. and Petroliagis, T. (1996). The ECMWF Ensemble Prediction System: Methodology and validation. Q.J.R. Meteorol. Soc., 122: 73–119. DOI: 10.1002/qj.49712252905.

http://weather.gc.ca/ensemble/naefs/index_e.html (Diakses tanggal 16 September 2020)

Palmer, TN., & Leutbecher, M. (2007). The Ensemble Prediction System – Recent and Ongoing Developments, Paper presented to the 36th Session of the SAC. https://www.wmolc.org/contents.php?sm_id=1&tm_id=1&cdepth=3&upnum=1&ca_id=95&s1=2&s2=1&t1=1.

Kirk, R.E. (2008). Statistics: An Introductions (5th Edition). USA: Madsworth. Pp. 123-151.ISBN-13:978-0-534-56478-0.

Kalnay, E., Historical perspective: earlier ensembles and forecasting forecast skill. Q J R Meteorol.Soc. 2019; 145 (Suppl.1): 25– 34. https://doi.org/10.1002/qj.3595.

Hoffman, R.N. and Kalnay, E. (1983) Lagged average forecasting, an alternative to Monte Carlo forecasting. Tellus A, 35A(2), 100–118. https://doi.org/10.1111/j.1600‐0870.1983 .tb00189.x.

Toth, Z. and Kalnay, E. (1993) Ensemble forecasting at NMC: the generation of perturbations. Bulletin of the American Meteorological Society, 74(12), 2317–2330. https://doi.org/10.1175/1520-0477(1993) 074<2317:EFANTG>2.0.CO;2.

Krishnamurti, T. N., Kishtawal, C. M., LaRow, T. E., Bachiochi, D. R., Zhang, Z. and co‐authors. 1999. Improved weather and seasonal climate forecasts from multi‐model superensemble. Science 285, 1548–1550.DOI: 10.1126/science.285.5433.1548.

Krishnamurti, T. N., Kishtawal, C. M., Zhang, Z., LaRow, T. E., Bachiochi, D. R. and co‐authors. 2000a. Improving tropical precipitation forecasts from a multi‐analysis superensemble. J. Climate 13, 4217–4227.DOI: 10.1175/1520-0442(2000)013<4217:ITPFFA>2.0.CO;2.

Krishnamurti, T. N., Kishtawal, C. M., Shin, D. W. and Williford, C. E. 2000b. Multi‐model superensemble forecasts for weather and seasonal climate. J. Climate 13, 4196–4216.DOI: 10.1175/1520-0442(2000)013<4196:MEFFWA >2.0.CO;2.

Krishnamurti, T. N., Surendran, S., Shin, D. W., Correa‐Torres, R. J., Kumar, T. S. V. and co‐authors. 2001. Real‐time multianalysis/multi‐model superensemble forecasts of precipitation using TRMM and SSM/I products. Mon. Wea. Rev. 129, 2861–1883.DOI: 10.1175/1520-0493(2001)129<2861:RTMMSF>2.0.CO;2.

Straus, D. M., and J. Shukla, 2000: Distinguishing between the SST forced variability and internal variability in mid latitudes: Analysis of observations and GCM simulations. Quart. J. Roy. Meteor. Soc., 126, 2323–2350.

Wandishin, M. S., S. L. Mullen, D. J. Stensrud, and H. E. Brooks, 2001: Evaluation of a Short-Range Multimodel Ensemble System. Mon. Wea. Rev., 129, 729–747, https://doi.org/10.1175/1520-0493(2001) 129<0729:EOASRM>2.0.CO;2.

Solman, S.A., Sanchez, E., Samuelsson, P. et al. Evaluation of an ensemble of regional climate model simulations over South America driven by the ERA-Interim reanalysis: model performance and uncertainties. Clim Dyn 41, 1139–1157 (2013). https://doi.org/10.1007/s00382-013-1667.

World Meteorological Organization (WMO) Impact based forecasting WMO Guidelines on Multi-hazard Impact-based Forecast and Warning Services, WMO-No. 1150, ISBN 978-92-63-11150-0, 2015.

World Meteorological Organization (WMO) Guidelines on Ensemble Prediction Systems and Forecasting, WMO-No. 1091, ISBN 978-92-63-11091-6, 2012.

Badan Pusat Statistik (BPS), Kabupaten Banjarnegara, Banjarnegara dalam angka 2017, 2017.

Jie He, A,B,C Nathaniel C. Johnson, A,B Gabriel A. Vecchi, D,E Ben Kirtman, A. T. Wittenberg, B And Sturmg S. SST Precipitation Sensitivity to Local Variations in Tropical Sea Surface Temperature, Journal Of Climate Doi: 10.1 175/Jcli-D-18-0262.1.

J.F David. , S. Scott. L. Zonal dan meridional Zonal Wind Indices to Reconstruct CONUS Winter Precipitation, Geophysical Research Letter, Vol. 44, pp 12,236-12,243 https://doi.org/10.1002/2017GL075959, 2017.

Z. Dingling H. Jianpi , G. Xiao G., C.Bin C., and Z Lei., Long-term trends of precipitable Water And Precipitation Over The Tibetan Plateau Derived From Satellite And Surface Measurements, Journal of Quantitative Spectroscopy & Radiative Transfer 122 pp 64–71, 2013.

L. Chiara L., V. Daniele, and M. Annalisa M. Temperature And CAPE Dependence Of Rainfall Extremes In The Eastern United States, Research Letter, 10.1002/2014gl062247 2014.

Taylor, J., An Introduction to Error Analysis, Sausalito, CA: University Science Books, 1982.

Arbain. A. A., Deteksi Daerah Rawan Longsor Menggunakan Data Geospasial dan SatelitBerbasis Sistem Informasi Geografis (Studi Kasus Provinsi Banten, DKI Jakarta dan Jawa Barat), Tesis, Program Studi Teknik Elektro, Universitas Indonesia, 2011.

Kalandoro, A.S.Z., Analisis Spasial Sebaran Rawan Longsor Di Kabupaten Bandung, Skripsi, Fakultas Pertanian, Institut Pertanian Bogor, 2018.

Arif, A. Skripsi, Program Sarjana Terapan Klimatologi Sekolah Tinggi Meteorologi Klimatologi Dan Geofisika, 2018.

Wilby RL, Wigley, TML. 2000. Precipitation Predictors for Downscaling: Observed and General Circulation Model Relationships. International J of Climatology 20(6). DOI: 10.1002/(SICI)1097-0088(200005)20:6<641:: AID-JOC501>3.0.CO;2-1.

Fang, X., and Kuo, Y-H. 2013. Improving Ensemble-Based Quantitative Precipitation Forecasts for Topography-Enhanced Typhoon Heavy Rainfall over Taiwan with a Modified Probability-Matching Technique. Mon. Wea. Rev. 141. DOI: 10.1175/MWR-D-13-00012.1.

Published

2021-01-15

How to Cite

Safril, A., Nuryanto, D. E., Chevi, N. L. C., Agustina, L., Ardi Z, K. A., Munawar, M., & Faturrahman, F. (2021). PREDIKSI CURAH HUJAN BULANAN UNTUK PERINGATAN DINI LONGSOR DI BANJARNEGARA BAGIAN SELATAN DENGAN STATISTICAL DOWNSCALING DAN ENSEMBLE. Jurnal Meteorologi Dan Geofisika, 21(2), 69–80. https://doi.org/10.31172/jmg.v21i2.698

Issue

Section

Article