MODULASI QBO TERHADAP ANOMALI KONSENTRASI UAP AIR DAN OZON DI STRATOSFER BAWAH
DOI:
https://doi.org/10.31172/jmg.v21i2.672Keywords:
QBO, uap air, ozon, stratosfer bawahAbstract
Angin rerata zonal di stratosfer bawah (100–10 hPa) yang merambat vertikal ke bawah seiring waktu dengan periode ~26 bulanan lazim disebut sebagai Quasi Biennial Oscillation (QBO). Untuk mengetahui hubungan antara QBO dengan konsentrasi uap air (H2O) dan ozon (O3) terhadap proses pendinginan dan pemanasan radiatif di stratosfer bawah, penelitian ini menggunakan data MLS Aura versi 4.2 sepanjang Agustus 2004–Juli 2019 (16 tahun). Kami menitikberatkan pada analisis variasi antartahunan yaitu simpangan dari rerata tahunan anomali H2O (H2O*) dan anomali (O3*). H2O* menunjukkan pola perambatan ke atas yang dikenal sebagai ‘atmospheric tape recorder’. Osilasi O3* positif–negatif dan anomali temperatur (T*) hangat–dingin terlihat jelas merambat ke bawah bersesuaian dengan pola perubahan angin zonal. Diagram komposit H2O* di 100 hPa menunjukkan anomali kering sekitar ± 3 bulan dari transisi fasa QBO timuran (QBO easterly; QBO-E) ke fasa QBO baratan (QBO westerly; QBO-W), dimana O3* memerlihatkan fluktasi menurun dan meningkat di 20–50 hPa. Udara kering (H2O* ~ –0.5 ppmv) dengan O3* positif (0.5 ppmv) tinggi akan menaikkan temperatur sebesar 2 K. Profil rerata H2O*, O3* dan T* pada dua fasa QBO yang berbeda menunjukkan modulasi QBO pada variasi uap air dan ozon yang memengaruhi pendinginan dan pemanasan radiatif di stratosfer bawah. Dengan demikian, variasi dua komposisi kimia (H2O dan O3) terkait respon radiatif di stratosfer bawah perlu dipertimbangkan untuk pengembangan model iklim.
Zonal mean wind in the lower stratosphere (100–10 hPa) that propagates vertically with a period of about 26 months is well known as the Quasi-Biennial Oscillation (QBO). To understand the relationship between QBO and both water vapor (H2O*) and ozone (O3*) concentration on the radiative cooling and heating in the lower stratosphere, this research utilized MLS Aura version 4.2 data from August 2004 to July 2019 (16 years). We focus on the analysis of interannual variation as the deviation from the annual mean of H2O anomaly (H2O*) and O3 anomaly (O3*). H2O* showed an upward propagation pattern called an atmospheric tape recorder. The positive-negative oscillation of O3* and warm-cool of temperature anomaly (T*) were clearly seen propagating downward associate with zonal wind alteration. The composite diagram of H2O* at 100 hPa showed dry anomaly during about ± 3 months around the transition period from QBO easterly phase (QBO-E) to QBO westerly phase (QBO-W), where O3* depict decreasing and increasing fluctuations at 20–50 hPa. The dry air about –0.5 ppmv with ozone about 0.5 ppmv will increase the temperature by 2 K. The mean profile of H2O*, O3* and T* during the two QBO phases showed QBO modulation on the water vapor and ozone variation that influence the radiative cooling and heating in the lower stratosphere. Therefore, the variation of two chemical constituents (H2O and O3) related to radiative response in the lower stratosphere should be considered when one will develop the climate model.
References
J.R. Holton, P.T. Haynes, M.E. Mclntyre, A.R. Douglass, R.B. Rood, and L. Pfister, “Stratosphere-Troposphere Exchange,” Reviews of Geophysics, 3, 4, 403–439, 1995.
W.J. Randel, and F. Wu, “Kelvin wave variability near the equatorial tropopause observed in GPS radio occultation measurements,” Journal of Geophysical Research, 10, D03102, doi:10.1029/ 2004JD005006, 2005.
A. Fueglistaler, A.E. Dessler, T.J. Dunkerton, I. Folkins, Q. Fu, and P.W. Mote,” Tropical Tropopause Layer,” Review of Geophysics, 47, RG1004, 2009.
A.K. Steiner, B.C. Lackner, F. Ladstadter, B. Scherllin-Pirscher, U. Foelsche, and G. Kirchengast,” GPS radio occultation for climate monitoring and change detection,” Radio Science, 46, RS0D24, doi:10.1029/2010RS004614, 2011.
S. Solomon, K.H. Rosenlof, R.W. Portmann, J.S. Daniel, S.M. Davis, T.J. Sanford, and G. Plattner, “Contributions of Stratospheric Water Vapor to Decadal Changes in the Rate of Global Warming,” Science, 327 (5970), 1212–1223. 2010.
M.P. Baldwin, L.J, Gray, T.J. Dunkerton, K. Hamilton, P.H. Haynes, W.J. Randel, J.R. Holton, M.J. Alexander, I. Hirota, T. Horinouchi, D.B.A Jones, J.S. Kinnersley, C. Marquardt, K. Sato, and M. Makahasi, “The Quasi-Biennial Oscillation,” Review of Geophysics, 39 (2), 179–229, 2001.
S. Son, Y. Lim, C. Yoo, H.H. Hedon, and J. Kim, “Stratospheric Control of the Madden-Julian Oscillation,” Journal of Climate, 30, 1909–1922, 2017.
S.P. Alexander, T. Tsuda, Y. Kawatani, and M. Takahashi,”Global distribution of atmospheric waves in the equatorial upper troposphere and lower stratosphere: COSMIC observations of wave mean flow interactions,“ Journal of Geophysical Research, 113 D24115, DOI:10.1029/2008JD010039, 2008.
E. Nishimoto, and S. Yoden, “Influence of the Stratospheric Quasi-Biennial Oscillation on the Madden–Julian Oscillation during Austral Summer,” Journal of the Atmospheric Sciences, 74, 1105–1125, 2017.
Y. Kawatani, J.N. Lee, and K. Hamilton, “Interannual Variations of Stratospheric Water Vapor in MLS Observations and Climate Model Simulations,” Journal of The Atmospheric Sciences, 71, 4071–4085, DOI: 10.1175/JAS-D-14-0164.1, 2014.
J.C. Witte, M.R. Schoebert, A.R. Douglass, and A.M. Thompson, “The Quasi-biennial Oscillation and annual variations in tropical ozone from SHADOZ and HALOE,” Atmospheric Chemistry and Physics, 8, 3929–3936, 2008.
N.J. Livesey, W.G. Reag, L. Foidevaus, A. Lambert, G.L. Manney, H.C. Pumphrey, M.L. Santee, M.J. Schwartz, S. Wang, R.E. Cofield, D.T. Cuddy, R.A. Fuller, R.F. Jarnot, J.H. Jiang, B.W. Knosp, P.C. Stek, P.A. Wagner, dan D.L. Wu, “EOS MLS version 3.3 and 3.4 Level 2 data quality and description document,” Tech. rep., Jet Propulsion Laboratory, available from http://mls.jpl.nasa.gov/, 2013.
M. Kanamitsu, W. Ebisuzaki, J. Woollen, S.K. Yang, J.J. Hnilo, M. Fiorino and G.L. Potter, “NCEP-DOE AMIIP-II Reanalysis (R-2),” Bull. Amer. Meteor. Soc, 1631–1643, 2002.
A. Lambert, W.G. Read, N.J. Livesey, M.L. Santee, G.L. Manney, L. Froidevaus, D.L. Wu, M.J. Schwartz, H.C. Pumphrey, C. Jimenez, G.W. Nedoluha, R.E. Cofield, D.T. Cuddy, W.H. Daffer, B.J. Druin, R.A. Fuller, R.F. Jarnot, B.W. Knosp, H.M. Pickettm,… and W, Atlas, “Validation of the Aura Microwave Limb Sounder middle atmosphere water vapor and nitrous oxide measurements,” Journal of Geophysical Research, 112, doi:10.1029/2007JD008724, 2007.
N.J. Livesey, M.J. Filipiak, L. Froidevaux, W.G. Read, A. Lambert, M.L. Santee, J.H. Jiang, H.C. Pumphrey, J.W. Waters, R.E. Cofield, D.T. Cuddy, W.H. Daffer, B.J. Drouin, R.A. Fuller, R.F. Jarnot, Y.B. Jiang, B.W. Knosp, Q.B. Li, V.S. Perum, M.J. Schwartz,… and C.R. Webster, “Validation of Aura Microwave Limb Sounder O3 and CO observations in the upper troposphere and lower stratosphere,” Journal of Gephysical Research, 113, D15S02, doi:10.1029/2007JD008805, 2008.
P.W. Mote, K.H. Rosenlof, M.E. Mclntyre, E.S. Carrm J.C. Gille, J.R. Holton, J.S. Kinnersley, H.C. Pumphrey, J.M. Russell, and J.W. Waters, “An Atmospheric tape recorder: The imprint of tropical tropopause temperatures on stratospheric water vapor,” Journal of Geophysical Research, 101, 3989–4006, 1996.
S.M. Osprey, N. Butchart, J.R. Knight, A.A. Scaife, K. Hamilton, J.A. Anstey, V. Schenzinger, and C. Zhang, “An unexpected disruption of the atmospheric quasi-biennial oscillatio,” Science, 353 (6306), 1424–1427, 2016.
M. Ern, F. Plogger, P. Preusse, J.C. Gille, L.J. Gray, S. Kalisch, M.G. Mlynczak, J.M. Russell III, and M. Riese, “Interaction of gravity waves with the QBO: A satellite perspective,” Journal of Geophysical Research:Atmospheres, 119, 2329–2355, doi:10.1002/2013JD020731, 2014.
K.M. Grise, D.W.J. Thompson, and T. Birner, “A Global Survei of Static Stability in the Stratosphere and Upper Troposphere,” American Meteorological Society, 23, 2275–2292, 2010
B.A. Scherllin-Pirscher, A.K. Steiner, G. Kirchengast, M. Schwarz, and S.S. Leory, “ The power of vertical geolocation of atmospheric profiles from GNSS radio occultation,” Journal of Geophysics Research: Atmospheres, 122, 1595–1616, doi:10.1002/2016JD025902, 2017.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.