VERIFIKASI PREDIKSI CURAH HUJAN ENSEMBLE MENGGUNAKAN METODE ROC

Authors

DOI:

https://doi.org/10.31172/jmg.v21i1.618

Keywords:

prediksi musim, keandalan, curah hujan, deret hari kering, peluang optimal

Abstract

Prediksi musim dibutuhkan untuk merencanakan waktu tanam adalah 1-2 musim ke depan. Informasi jumlah curah hujan dan deret hari kering merupakan parameter yang diperlukan dalam perencanaan pertanian. Penelitian bertujuan untuk menguji kemampuan model prediksi curah hujan musim ensemble, menentukan peluang optimal pengambilan keputusan, dan menentukan akurasi prediksi berdasarkan peluang optimal. Verifikasi model dilakukan untuk musim kemarau (MK) I (Februari-Mei) dan MK 2 (Mei-Agustus) pada daerah dengan pola hujan monsunal (Kabupaten Indramayu) dan MK 1 (Mei-Agustus) untuk pola hujan lokal (Kabupaten Bone). Keluaran prediksi musim dari Climate Forecast System (CFS) v2 digunakan untuk men-downscale jumlah curah hujan (CH) dan deret hari kering ≥15 hari (DHK15) di wilayah penelitian. Downscaling menggunakan metode Constructed Analogue dengan prediktor angin pada paras 850 hPa pada lima wilayah monsun. Metode yang digunakan untuk mengevaluasi keandalan prediksi probabilistik adalah Relative Operating Characteristics. Peluang optimal berdasarkan cut point ditentukan menggunakan Youden Indeks, dan akurasi prediksi pada peluang optimal ditentukan dengan metode Proportion of Correct. Hasil penelitian menunjukkan bahwa pengambilan keputusan menggunakan peluang optimal berdasarkan cut point untuk pengambilan keputusan dapat meningkatkan keandalan prediksi jumlah curah hujan sebesar 5-17% pada MK1 dan 3-24% pada MK2, dan frekuensi DHK15 sebesar 2-10%.

 

The seasonal predictions are needed to adjust planting time for the following 1-2 seasons. Information on the amount of rainfall and dry spell is an appropriate parameter in agricultural planning. The research aimed to examine the skill of ensemble seasonal rainfall prediction models, to determine an optimal probability for making decisions, and to determines the skill of seasonal prediction based on optimal probability. Model verifications were assessed in Dry Season Planting (DSP)1 (February-May) and DSP2 (May-August in Monsoonal (Indramayu District) dan DSP1 (Mei-August) in Local (Bone District) Rainfall Pattern. We used Relative Operating Characteristics to evaluate the skill of probabilistic predictions. The optimal cut-point was assessed using the Youden Index, and the skill of prediction at an optimal cut point was determined using the Proportion of Correct method. In conclusion, the results show that the use of the optimal probability at the cut point in decision-making increase the skill of rainfall prediction 5-17% in DSP1 and 3-24% in DSP2. As for the frequency of DHK15, the skill increases by 2-10%.

Author Biographies

Elza Surmaini, Kementerian Pertanian (Kementan)

Balai Penelitian Agroklimat dan Hidrologi

Tri Wahyu Hadi, Institut Teknologi Bandung (ITB)

Jurusan Meteorologi, Fakultas Ilmu dan Teknologi Kebumian

References

E. Surmaini, and A. Faqih. Kejadian iklim dan dampaknya terhadap pertanian tanaman pangan di Indonesia. Jurnal Sumber Daya Lahan. Vol 10 (2), pp.115-128.

J. Slingo, and T. Palmer. Uncertainty in weather and climate prediction. Phil. Trans. R. Soc. A. vol. 369, pp. 4751–4767, 2011.

E. Becker, and H. van den Doll. Probabilistic Seasonal Forecasts in the North American Multimodel Ensemble: A Baseline Skill Assessment. J Clim, vol. 29, pp. 3015–3026, 2016.

E. Surmaini, T. W. Hadi, K. Subagyono, and N. T. Puspito. Prediction of drought impact on rice paddies in west Java using analogue downscaling method. Indones J agric Sci. vol 16, pp. 21-30, 2015.

T. Gneting, and A. E. Raftery, A. E. Weather forecasting with ensembles methods. Science, vol 310, pp. 248-249, 2005.

S. Jun, N. Y. Kang, W. Lee, and Y. Chun. An Alternative Multi-Model Ensemble Forecast for Tropical Cyclone Tracks in the Western North Pacific. Atmosphere, vol. 8(12), pp.174-182, 2017.

T. Palmer. The primacy of doubt: Evolution of numerical weather prediction from determinism to probability, J. Adv. Model. Earth Syst., vol. 9, pp. 730– 734, 2017.

R. E Nicholas, and D. S. Battisti. Empirical downscaling of high‐resolution regional precipitation from large‐scale reanalysis fields, J. Appl. Meteorol. Climatol. Vol. 51, pp.100–114, 2012.

L. Hay, J. LaFontaine, and S. Markstrom. Evaluation of statistically downscaled GCM output as input for hydrologic.al and stream temperature simulation in the Apalachicola‐Chattahoochee‐Flint River Basin (1961–1999), Earth Interact., vol.18, pp.1–32, 2014.

H. G. Hidalgo, M. D. Dettinger, and D. R. Cayan. Downscaling with Constructed Analogues: Daily Precipitation and Temperature Fields Over the United States. California Energy Commission. PIER Energy‐Related Environmental Research. 2008.

L. Juneng, F. Tanggang, H. Kang, W.J. Lee, and Y.K. Seng. Statistical Downscaling Forecasts for Winter Monsoon Precipitation in Malaysia Using Multimodel Output Variables. J. Clim, vol. 23, pp.17-36, 2010.

K. H. Kang, C. K. Park, A. L. S. Solis, and K. Stitthichivapak. Multimodel output statistical downscaling prediction of precipitation in the Philippines and Thailand. Geophysics Research Letter, vol. 34, L15710. 2007.

D. J. Vimont, D. S. Battisti, and R. L. Naylor. Downscaling Indonesian precipitation using large-scale meteorological fields. International Journal of Climatology, vol.30, pp.1706-1722, 2010.

A. Syafril, T. W Hadi, S. Hadi, and B. Tjasyono. Prediksi hujan bulanan menggunakan adaptive statistical downscaling. Jurnal Meteorologi dan Geofisika, vol. 14 (1), pp. 25-21, 2013.

S. J. Mason, and N. E Graham. Conditional probabilities, relative operating characteristics, and relative operating levels. Weather and Forecasting, vol.14, pp.713–725, 1999.

S. J. Mason, and N. E Graham. Areas beneath the relative operating characteristics (ROC) and relative operating levels (ROL) curves: Statistical significance and interpretation. Q. J. R. Meteorol. Soc. vol. 128, pp. 2145–2166, 2002.

M. Vihinen. How to evaluate performance of prediction methods? Measures and their interpretation in variation effect analysis. Proceeding of BMC Genomics, 2012, pp. 13(Suppl 4): S2.

H. L Chang, S. C. Yang, P. L. Lin, and Y. C. Liou. Analysis of the Relative Operating Characteristic and Economic Value Using the LAPS Ensemble Prediction System in Taiwan. Mon. Wea. Rev.vo. 143, pp.1833-1846. 2015.

L. O. Harvey, K. R. Hammond, C. M Lusk, and E. F Mross. The application of signal detection theory to weather forecasting behavior. Mon. Wea. Rev., vol. 120, pp.863–883, 1992.

T. Fawcett. An introduction to ROC analysis. Pattern Recognition Letters, vol 27, pp 861-874, 2006.

Kadarsah. Aplikasi ROC untuk Uji Kehandalan Model HYBMG. Jurnal Meteorology dan Geofisika, vol 11 ( 2): 33-43, 2010.

F. Y. Rohmawati, R. Boer, A. Faqih. Prediksi Awal Musim Hujan Berdasarkan Indeks Variabilitas Iklim di Pulau Jawa. Jurnal Tanah dan Iklim, vol. 38 (1):35-42, 2014.

S. Rustiana, E. Hermawan, N. A. Kusumah. Rainfall Prediction of Java Island during the dry and rainy season with Climate Predictability Tool (CPT) (Base on CHIRPS Data. The 5th International Symposium for Sustainable Humanosfer. http://repository.lapan.go.id/index.php. (diakses 15 April 2018).

E. Surmaini, T.W Hadi, K. Subagyono, and N.T Puspito. Early detection of drought impact on rice paddies in Indonesia. Theoretical and Applied Climatology, vol. 121, pp. 669-684, 2015.

E. G. Castillo, R. J. Buresh and K. T. Ingram, Lowland rice yield as affected by timing of water deficit and nitrogen fertilization. Agronomic Journal, Volume 84, Issue 2 pp. 152-159, 1992.

D. F. Tabbal, B. A. M Bouman, S. I. Bhuiyan, E. B. Sibayan, and M. A. Sattar. On-farm strategies for reducing water input in irrigated rice: case studies in the Philippines. Agriculture Water Management, vol. 56, pp.93-112, 2002.

J. A. Hatala, M. Detto, O. Sonnentag, S. J. Deverel, J. Verfaillie, and D. D. Baldocchi, 2012: Greenhouse gas (CO2, CH4, H2O) fluxes from drained and flooded agricultural peatlands in the Sacramento–San Joaquin Delta. Agric. Ecosyst. Environ. Vol. 150, pp. 1–18, 2012.

A. U. Timm, D. R. Roberti, N. A. Streck, L. G. G. de Gonzales, O. C. Acevedo, O. L. L. Moraes, V. S. Moreira, G. A. Degrazia, M. Ferlan, D. L. Toll. Energy Partitioning and Evapotranspiration over a Rice Paddy in Southern Brazil. Journal of hydrometeorology. Vol. 15, pp. 1975-1987, 2014.

E. Surmaini, T. W. Hadi, and K. Subagyono, N. T. Puspito. Penentuan Nilai Ambang Curah Hujan untuk Deteksi Dini Kekeringan pada Tanaman Padi Sawah: Studi Kasus Provinsi Jawa Barat dan Sulawesi Selatan. Jurnal Tanah dan iklim 38 (2):79-87, 2014.

S. J. Mason. Understanding forecast verification statistics. Meteorological Appli-cations, vol.15, pp.31-40, 2008.

E. F Schisterman, N. J. Perkins, A. Liu, and H. Bondell. Optimal cut-point and its corresponding Youden Index to discriminate individuals using pool blood samples. Epidemiology, vol. 16 (1), pp.73-81, 2005.

G. Shan. Improved Confidence Intervals for the Youden Index. PLoS ONE, vol. 10(7), pp.e0127272, 2015.

D. S. Wilks. Statistical Methods in Atmospheris Science. Academic Press. 627p, 2006.

Y. S. Swarinoto, E. Aldrian, A. H. Wigena. Model system prediksi ensemble total curah hujan bulanan dengan niai pembobot (Kasus wilayah Kabupaten Indramayu. Jurnal Meteorologi dan Geofisika vol 13(3): 189-200, 2012.

D. H. Bae, M. H. Lee, and S. K. Moon. Development of a precipitation–area curve for warning criteria of short-duration flash flood. Nat. Hazards Earth Syst. Sci., vol 18: 171–183, 2018.

R. Muharsyah. Kajian verifikasi produk prakiraan curah hujan bulanan (2003-2012). Jurnal Meteorologi dan Geofisika vol 18(2);33-44, 2017.

N. J. Perkins and E. F. Schisterman. The inconsistency of “optimal” cut-points using two ROC based criteria. American Journal of Epidemiology, vol. 163, no. 7, pp. 670–675, 2006.

Published

2020-11-02

How to Cite

Surmaini, E., & Hadi, T. W. (2020). VERIFIKASI PREDIKSI CURAH HUJAN ENSEMBLE MENGGUNAKAN METODE ROC. Jurnal Meteorologi Dan Geofisika, 21(1), 37–44. https://doi.org/10.31172/jmg.v21i1.618

Issue

Section

Article