PROFIL VERTIKAL ATMOSFER SELAMA AKTIVITAS SIKLON TROPIS CEMPAKA DAN DAHLIA
DOI:
https://doi.org/10.31172/jmg.v19i2.589Keywords:
Siklon Tropis, Cempaka, Dahlia, Radiosonde, Profil VertikalAbstract
Siklon Tropis Cempaka dan Dahlia yang terbentuk di wilayah Tropical Cyclone Warning Center (TCWC) Jakarta pada akhir bulan November 2017 telah mengakibatkan banjir dan tanah longsor di sebagian besar Pulau Jawa. Posisi kedua siklon tersebut yang sangat dekat dengan Pulau Jawa mempengaruhi kondisi tropospher atas dan stratosphere bawah di Pulau Jawa. Pada penelitian ini dilakukan analisis profil vertikal atmosphere di Pulau Jawa dengan menggunakan data Radiosonde pada tiga stasiun pengamatan radiosonde, yaitu Stasiun Meteorologi Cengkareng, Stasiun Meteorologi Cilacap, dan Stasiun Meteorologi Juanda. Penelitian ini bertujuan mengetahui kondisi profil vertikal pada saat terjadi Siklon Tropis Cempaka dan Siklon Tropis Dahlia. Data yang digunakan adalah data radiosonde pada Desember-Februari (DJF) tahun 2013-2017 di Stasiun Meteorologi Cengkareng dan Juanda, DJF tahun 2017 di Stasiun Meteorologi Cilacap, serta data pada ketiga stasiun saat terjadi siklon tropis. Nilai rerata parameter cuaca dan indeks stabilitas atmosphere yang diperoleh melalui software RAOB versi 6.5 menunjukan Siklon Tropis Cempaka memiliki pengaruh yang lebih signifikan terhadap kondisi profil vertikal atmosfer di Pulau Jawa dibandingkan dengan Siklon Tropis Dahlia.
Equatorial Undercurrent (EUC) plays an important role in the dynamic of the eastern Indian Ocean. EUC supplies water masses with high salinity into Indonesian waters. This article examines the EUC and its water mass characteristics at 90°E across 2°S - 2°N on 1st - 3rd March 2017 which is part of the Initiative on Maritime Observation and Analysis Expedition (Indonesian Prima 2017). The analysis of temperature, salinity, and sigma-t data obtained from conductivity, temperature and depth (CTD) instruments at five stations (CTD11-CTD14) and current profiles of Shipboard Acoustic Doppler Current Profiles (SADCP) indicate the presence of high-speed water column flowing the Arabian Sea High Salinity Water (ASHSW) as characterized by maximum salinity (35.15 - 35.2 PSU) in the temperature range of 18 ° C - 23 ° C and density of 23 - 25 kg / m3. ASHSW is carried by EUC from the western Indian Ocean at the upper thermocline layer. It was found that EUC during this study tended to be asymmetrically stronger to the north of the equator. The analysis shows a maximum speed of 94 cm/sec and a transport estimated of EUC water masses based on salinity contour 35.15 and 35.2 PSU respectively of ̴ 3.4 Sv and ̴ 1.4 Sv, while at salinity 35.00 - 35.10 PSU of ̴ 8.7 Sv. The total estimated EUC mass transport calculated in this study is ̴ 13.5 Sv.
References
M. V. Ratnam, S. Ravindra Babu, S. S. Das, G. Basha, B. V Krishnamurthy, and B. Venkateswararao, “Effect of tropical cyclones on the stratosphere-troposphere exchange observed using satellite observations over the north Indian Ocean,” Atmos. Chem. Phys, vol. 16, pp. 8581–8591, 2016.
R. Rondanelli et al., “The Life Cycle Of A Radiosonde,” 2012.
L. Haimberger, “Homogenization of Radiosonde Temperature Time Series Using Innovation Statistics,” 2007.
N. Crnivec and R. K. Smith, “Mean radiosonde soundings for the Australian monsoon/cyclone season,” Trop. CYCLONE Res. Rep., 2015.
F. Flores et al., “The Life Cycle Of a Radiosonde,” Am. Meteorol. Soc., 2013.
P. M. Finocchio, S. J. Majumdar, N. David S, and M. Iskandarani, “Idealized Tropical Cyclone Responses to the Height and Depth of Environmental Vertical Wind Shear,” Am. Meteorol. Soc., vol. 144, 2016.
D. O. Blanchard, “NOTES AND CORRESPONDENCE Assessing the Vertical Distribution of Convective Available Potential Energy,” 1998.
M. D. Syaifullah, “Analisis Kondisi Udara Atas Wilayah Indonesia dengan Radiosonde,” J. Meteorol. dan Geofis., vol. 18, no. 1, Mar. 2018.
M. Budiarti, M. Muslim, and Y. Ilhamsyah, “Studi Indeks Stabilitas Udara Terhadap Prediksi Kejadian Badai Guntur (Thunderstorm) Di Wilayah Stasiun Meteorologi Cengkareng Banten,” J. Meteorol. dan Geofis., vol. 13, no. 2, 2012.
J. J. George and R. J. Shafer, “Weather Forecasting for Aeronautics,” Weather Forecast. Aeronaut., 1960.
B. Chen and Z. Liu, “Analysis of Precipitable Water Vapor (PWV) Data Derived from Multiple Techniques: GPS, WVR, Radiosonde and NHM in Hong Kong,” Proc. Vol. I, Lect. Notes Electr. Eng. 303, 2014.
Downloads
Additional Files
- Untitled (Bahasa Indonesia)
- Untitled (Bahasa Indonesia)
- Untitled (Bahasa Indonesia)
- Untitled (Bahasa Indonesia)
- Untitled (Bahasa Indonesia)
- Untitled (Bahasa Indonesia)
- Untitled (Bahasa Indonesia)
- Untitled (Bahasa Indonesia)
- Untitled (Bahasa Indonesia)
- Untitled (Bahasa Indonesia)
- Untitled (Bahasa Indonesia)
- Untitled (Bahasa Indonesia)
- Untitled (Bahasa Indonesia)
- Untitled (Bahasa Indonesia)
- Untitled (Bahasa Indonesia)
- Untitled (Bahasa Indonesia)
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.