COMPARING BIAS CORRECTION METHODS TO IMPROVE MODELLED PRECIPITATION EXTREMES
DOI:
https://doi.org/10.31172/jmg.v19i2.449Keywords:
Bias correction methods, extreme precipitation, statistical downscaling, WEREX V data set.Abstract
This study aims to analyze and improve modelled extreme precipitation. It was conducted in the German Federal State of Saxony using the WEREX V data set. WEREX V is a model that statistically downscales Global Circulation Model (GCM) data. Inputs for the WEREX V model included GCMs ECHAM 5, HadCM3C and HadGEM2 (sometimes downscaled with Regional Climate Models RCMs REMO, RACMO and CCLM), SRES scenarios A1B and E1, and different model runs. The output of analysis was shown by a boxplot since the WEREX V data set has 120 future projections of precipitation. The model results were verified against observed data obtained from representative meteorological stations, and systematical deviations or biases were identified. To improve the model results, two bias correction methods were applied with special emphasis given to the reproduction of precipitation extremes. Empirical quantile mapping and gamma quantile mapping methods were applied. The ability of the WEREX V ensemble to capture extreme precipitation values varied; this was described in terms of biases. All of the identified correction methods were capable of reducing the bias related to the intensity of extreme precipitation occurrence during the calibration period. The performance of empirical quantile mapping is better than gamma quantile mapping to reduce biases (median value) and uncertainty (inter quartile range value).
Penelitian ini bertujuan untuk mengoreksi bias curah hujan ekstrim keluaran model. Wilayah kajian dalam penelitian ini adalah negara bagian Saxony, German sedangkan data model yang digunakan adalah data WEREX V. Dataset WEREX V adalah data GCM yang yang didownscale secara statistic. Adapun GMC yang digunakan adalah ECHAM 5, HadCM3, HadGem2 dan beberapa RCM (REMO, RAMCO, dan CCLM) dengan menggunakan skenarios SRES A1B and E1. Karena dataset WEREX V terdiri dari 120 data model, maka boxplot digunakan untuk menggambarkan hasil analisis baik untuk identifikasi maupun koreksi bias. Hasil keluaran model dibandingkan dengan data pengamatan (observasi) dari stasiun meteorologi. Dari hasil perbandingan ini, bias akan dideteksi. Untuk meningkatkan akurasi model, bias dikoreksi menggunakan dua metode yaitu Emperical quantile mappinh (EQM) dan Gamma quatile mapping (gamma). Kemampuan model (data WEREX V) untuk menggambarkan curah hujan ekstrim berbeda antar stasiun hal ini digambarkan dengan nilai bias yang berbeda. Metode EQM dan Gamma mampu mengurangi bias maupun ketidakpastian model (uncertainty). Performa EQM lebih baik dibandingkan Gamma. Secara umum EQM mampu mengurangi bias maupun ketidakpastian model.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.