PRAKIRAAN CURAH HUJAN TAHUN 2008 MENGGUNAKAN TEKNIK NEURAL NETWORK DENGAN PREDIKTOR SEA SURFACE TEMPERATURE (SST) DI STASIUN MOPAH MERAUKE
DOI:
https://doi.org/10.31172/jmg.v10i1.29Keywords:
curah hujan, SST, jaringan saraf tiruan, Add-In Forecaster XLAbstract
Banyak faktor yang memepengaruhi terjadinya hujan, salah satunya adalah Suhu Muka Laut atau Sea Surface Temperature (SST). Dibuat suatu hubungan bahwa SST bulan ke-n-1 mempengaruhi curah hujan bulan ke-n. Data SST kemudian dikorelasikan dengan data curah hujan, sehigga diperoleh SST Terpilih yang berpengaruh banyak terhadap besarnya curah hujan di suatu wilayah. Besarnya curah hujan dapat diprediksi dengan teknik neural network. Pada teknik ini digunakan data masa lampau untuk mempelajari sifat hubungan antara SST dan curah hujan sehingga nanti dapat digunakan untuk memprediksi curah hujan di masa yang akan datang. Teknik neural network terdapat pada Add-In Forecaster X. Dengan Add-In Forecaster XL ini akan diprediksi besarnya curah hujan pada tahun 2008 di Stasiun Meteorologi Mopah Merauke. Data curah hujan selama 10 tahun (1998 – 2007) digunakan sebagai data target dan data SST Terpilih selama 10 tahun (1998-2007) digunakan sebagai data input. Untuk mendapatkan prediksi curah hujan tahun 2008 digunakan data SST Terpilih untuk tahun 2008 sebagai data input. Validasi dilakukan terhadap hasil prediksi dengan data observasi tahun 2008 untuk menguji keakuratan Add-In forecaster XL dalam memprediksi curah hujan bulanan.
Many factors can make rainfall, such as sea surface temperature (SST). We made a relationship that SST in this month will influence the rainfall in the next month. SST data and rainfall data will make a correlation. It makes a preference SST and it influences to rainfall at an area. An immensity rainfall can make a prediction by neural network technique. We used the last data to know the relationship trait between SST and rainfall for this technique. It will be use to make a rainfall prediction in the next time. Neural network technique obtains in Add –In Forecaster XL. It can make a rainfall prediction in 2008 at Meteorology Station of Merauke. Rainfall data used by data target and preference SST used by data input since 10 years (1998-2007). A preference SST in 2008 as a data input used to get a rainfall prediction in 2008. A validation made by prediction process with observation data in 2008 to try an Add-In forecaster XL accuracies when make rainfall prediction in the next time.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2014 Robi Muharsyah

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.