PENYUSUNAN SKENARIO MASA TANAM BERDASARKAN PRAKIRAAN CURAH HUJAN DI SENTRA PRODUKSI PANGAN
DOI:
https://doi.org/10.31172/jmg.v9i1.22Keywords:
Rainfall prediction, sea surface temperature Nino 3.4, Kalman filter, validation, cropping patternAbstract
Using deterministic model to forecast rainfall in tropical region in which its determinants quite complicated, dynamic and random is unmanageable. Therefore, it needs statistical model renewable in real time. Kalman filter combines between physical and statistical model approach to be stochastic model that has been renewable anytime for objective on line forecasting. Model validation relate rainfall and sea surface temperature Nino 3.4 gives correlation coefficient value of more than 75%. It implies that predicting model using Kalman Filter is feasible to forecast montly rainfall to design cropping pattern. Crops water balance is computed using local rainfall pattern, but a long with increased intensity and frequency of climate anomaly the computed water balance needs to be renewed more frequently through cropping pattern setting based on forecast aspects. Rainfall prediction with Kalman filtering result coeficient correlation of validation 48-92%. Results of cropping pattern scenarios based on predicted rainfall show there are periods with harvest losses more than 20% especialy in the locations with unequel annual rainfall distribution. Thus, it is not recommended to plant seasonal crops. Sukamandi show the characteristic model better than Tamanbogo, Batang and Wonosari. Date of planting that have risk decreasing of yield are 1 and 11 November (Tamanbogo), 1 November-1 January, and 21 February (Sukamandi), 1 November-1 December (Batang) and 1 November, 11 and 21 February (Wonosari). For application of cropping patterns scenario, rainfall prediction model needs to be renewed spacial and temporal based on rainfall data prediction real time supported with soil and crops data. Cover area conditional from rainfall station (topography, wind ward, etc) need considered if we want to apply cropiing pattern scenario.
Penggunaan model deterministik untuk prediksi curah hujan di daerah tropik yang faktor determinannya sangat komplek, dinamis dan acak sangat rumit. Oleh karena itu diperlukan model statistik yang dapat diperbarui secara real time. Filter Kalman menggabungkan pendekatan model fisik dan statistik menjadi model stokastik yang dapat diperbarui setiap saat untuk tujuan peramalan segera (on line forecasting). Validasi model yang menghubungkan curah hujan dan suhu permukaan laut Nio 3.4 menghasilkan nilai koefisien korelasi lebih dari 75%. Artinya model prediksi dengan Filter Kalman ini dapat digunakan untuk memprakirakan curah hujan bulanan dan diaplikasikan untuk penyusunan masa tanam. Selama ini neraca air tanaman dihitung berdasarkan pola curah hujan setempat, namun dengan meningkatnya intensitas dan frekuensi anomali iklim akan menyebabkan hasil komputasi neraca air harus diperbarui setiap saat melalui penyusunan masa tanam yang memperhitungkan aspek prediksi. Prakiraan curah hujan dengan metode Filter Kalman menghasilkan nilai koefisien korelasi validasi 48-92%. Hasil skenario pola tanam berdasarkan data prediksi curah hujan memperlihatkan bahwa ditemukan periode-periode dengan persentase kehilangan hasil lebih dari 20%, terutama pada lokasi dengan distribusi curah hujan yang tidak merata sepanjang tahun. Dengan demikian tidak disarankan untuk melakukan penanaman pada periode tersebut. Lokasi Sukamandi memperlihatkan karakteristik model yang lebih bagus dibandingkan Tamanbogo, Batang, Wonosari. Tanggal tanam yang diperkirakan beresiko menurunkan hasil adalah 1 dan 11 November (di Tamanbogo), 1 November-1 Januari, dan 21 Februari (di Sukamandi), 1 November-1 Desember (di Batang) dan 1 November, 11 dan 21 Februari (di Wonosari). Untuk aplikasi skenario masa tanam, model prakiraan hujan perlu di perbarui di setiap saat dan tempat berdasarkan data prakiraan curah hujan terbaru di dukung dengan data tanah dan tanaman. Selain itu perlu diperhatikan cakupan wilayah yang bisa diwakili oleh stasiun hujan yang digunakan. Untuk itu perlu dipertimbangkan kondisi topografi, arah hadap angin dan sebagainya.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2014 Woro Estiningtyas, Elza Surmaini, Kharmila Sari Hariyanti

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.