VALIDASI DAN KOREKSI DATA SATELIT TRMM PADA TIGA POLA HUJAN DI INDONESIA
DOI:
https://doi.org/10.31172/jmg.v15i1.169Keywords:
TRMM, pola hujan, validasi, koreksiAbstract
Prediksi curah hujan cukup sulit dilakukan karena keragamannya sangat tinggi dan banyaknya permasalahan data, seperti minimnya ketersediaan data, data tidak lengkap/kosong, jumlah stasiun kurang tersebar, kurang tenaga pengamat, sistem pengamatan dan pemasukan data masih manual, serta pengumpulan data berjalan lambat. Untuk mengatasi permasalahan tersebut, dapat digunakan satelit hujan yang memiliki resolusi spasial dan temporal tinggi, cakupan wilayah luas, data near real-time, akses cepat, dan ekonomis. Penelitian ini dilakukan untuk validasi dan koreksi data satelit TRMM terhadap data observasi pada tiga pola hujan berbeda di Indonesia. Analisis dilakukan menggunakan analisis statistika, perhitungan galat dan pengembangan faktor koreksi untuk data satelit TRMM di wilayah dengan pola hujan monsun (Lampung, Jawa Timur, Kalimantan Selatan), pola hujan equatorial (Sumatera Utara, Kalimantan Barat), dan pola lokal (Maluku). Hasil validasi data satelit TRMM terhadap data observasi menunjukkan nilai korelasi tinggi di wilayah pola monsun (>0.80), cukup tinggi pada pola equatorial (>0.60) dan pola lokal (>0.75). Nilai RMSE lebih rendah di wilayah pola hujan monsun (RMSE = 58-84), dibandingkan wilayah pola hujan equatorial (RMSE=97-158) dan lokal (RMSE=173). Hasil koreksi data satelit TRMM diperoleh faktor koreksi dengan bentuk persamaan geometrik untuk pola monsun dan equatorial, serta linier untuk pola lokal. Setelah dilakukan koreksi, diperoleh galat data satelit menurun di Lampung 40.3%, Kalimantan Selatan 3.17%, dan meningkat di Jawa Timur 18.9%. Demikian di Kalimantan Barat, galat satelit TRMM menurun 58%, Sumatera Barat 10%, dan Maluku 12.3%. Sedangkan nilai korelasisetelah dilakukan koreksi meningkatdi wilayah pola monsun dan equatorial sebesar 1-2%, dan menurun di wilayah lokal sebesar 1%.
Rainfall is difficult to be predicted because of its high variability and other problems such as lack of data availability, data incompletely, less spreading of the station, less observer, and manual data entry. Rainfall satellite can be used to encourage these problems because it has a high temporal and spatial resolution, wide-coverage, near real-time and fast accessibility. This research has been conducted to validate and correct the TRMM data on three rainfall patterns (monsoonal, equatorial, local pattern). The statistical analyses and correction factor development for TRMM data are conducted. Validation showed a high correlation between TRMM and gauge data on the monsoonal pattern (>0.80), a high correlation on equatorial (>0.60) and local pattern (>0.75). The lowest RMSE found on the monsoonal pattern (58-84), equatorial (97-158), and local (173). After correction, the error of corrected TRMM data decreased for three rainfall patterns. While the correlation value increased on the monsoonal and equatorial pattern of 1-2% and decreased in the local pattern of 1%.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.