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ABSTRACT 

 
The aim of this work is to study turbulent flow over two-dimensional hill using a 
simple isentropic model. The isentropic model is represented by applying the 

potential temperature θ, as the vertical coordinate and is conversed in adiabatic 

flow regimes. This implies a vanishing vertical wind in isentropic coordinates 

which reduces the three dimensional system to a stack of two dimensional θ –
layers. The equations for each isentropic layer are formally identical with the 

shallow water equation. A computational scheme of centered finite differences is 

used to formulate an advective model. This work reviews a simple isentropic 
model application to investigate gravity wave and mountain wave phenomena 

regard to different experimental design of computation and topographic height. 

 
Keywords: atmospheric flow, gravity wave, isentropic coordinates, model, two-

dimensional system. 
 

ABSTRAK 
 

Model sederhana isentropis telah diaplikasikan untuk mengidentifikasi perilaku 

aliran masa udara melewati topografi sebuah gunung. Dalam model isentropis, 

temperature potensial θ digunakan sebagai koordinat vertikal dalam rezim aliran 
adiabatis. Medan angin dalam arah vertical dihilangkan dalam koordinat 

isentropis  sehingga mereduksi sistim tiga dimensi menjadi sistim dua dimensi 

lapisan θ. Skema komputasi beda hingga tengah telah digunakan untuk 
memformulasikan model adveksi. Paper ini membahas aplikasi sederhana dari 

model isentropis untuk mempelajari gelombang gravitas dan fenomena angin 

gunung  dengan desain komputasi periodic dan kondisi batas lateral serta 

simulasi dengan topografi yang berbeda. 
 

Kata Kunci: aliran atmosfer, gelombang gravtasi, koordinat isentropis, model dua 

dimensi. 
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1. INTRODUCTION 

 

The earth‟s troposphere is the portion 
of the atmosphere where radiation and 

dominant mechanisms of vertical heat transfer 

such as convection takes place. At the mid-

latitudes this occurs up to a height of about 
10km while in the low latitudes the 

troposphere has a higher altitude. Although it 

is composed of gases, in many ways the 
atmosphere behaves like a fluid, and hence, 

many atmospheric disturbances occur as 

waves. These atmospheric disturbances result 

from the interactions of several forces 
including pressure gradient, Coriolis force, 

gravity, and friction 

Since the friction effect of surface‟s 
terrain shape such as a mountain profile is 

very important and has to be considered for 

the local to mesoscale atmospheric dynamic, 
for example, it has important aspect for the 

study of gravity wave mechanisms which may 

include geostrophic adjustment, shear 

instability, convection, and topography, 
hence, modeling of flow over the mountain is 

then more relevant to understanding of the 

physics of stratified atmosphere studies, 
particularly to study mountain wave and 

downslope winds in relation to aircraft 

incident around the mountain area. As long as 
the atmospheric conditions include a stable 

atmosphere with strong winds oriented 

perpendicular to the mountain range, 

mountain waves and downslope wind are 
likely. This is true regardless of the location 

and orientation of the mountains. In 

Indonesia, some mountain waves are well 
known such as Angin Koembang in Java and 

Wambraw in Papua which probably 

responsible to the aircraft incident around 

these area.  
For these purposes, the inviscid Euler 

equations are taken as the starting point for 

the model. 

 ,  (1.1) 

   (1.2)  

where u is the velocity vector, ρ is density, p 

is pressure and  is the unit vector in the z 

direction, g is the gravitational constant, and 

the 2D advection derivative is defined as  

 
 

Typically in the atmospheric 

modeling a number of simplifying assumption 

are made. Firstly, the Boussineq 

approximation is assumed that the effect of 

density fluctuations on the conservation of 

mass (continuity equation) and inertia can be 

ignored, but that buoyancy forces must be 

accounted for. For the hydrostatic 

approximation, p and ρ are then splitted into a 

vertical profile -hence stratification - and 

small disturbances to that profile                                                                                                       

 

 
these approximations have been discussed in 

detail in Durran (1998). Now from (1.1) and 

(1.2) can be written as : 

    (1.3) 

     (1.4) 

If we assume the troposphere behaves 
ideally, then we can have a look to the 

thermodynamic properties of an ideal gas. The 

equation of state for an ideal gas is  

     (1.5) 

where M is the molecular weight, T is the 

temperature, and R is the universal gas 
constant. The first law of thermodynamics 

states that for a unit mass  

    (1.6) 

where q is the heat transferred into the system, 

is the heat capacity at constant volume, and 

V is the volume. Differentiating (1.5) and 

considering that , leads to  

              (1.7) 

Substituting (1.7) into (1.6) and using 

the fact that for an ideal gas  

where  is the heat capacity at constant 

pressure, therefore, the thermodynamic 

equation can be expressed as  

    (1.8) 

From these equation, we can derive the 

expression of entropy in an ideal gas, 

     (1.9) 
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An adiabatic process is one in which 

there is no heat transfer across the system 

boundary (entropy remains constant). From 
(1.9) we can realize that if air is brought to 

some reference pressure adiabatically, its 

temperature at that point, which is defined as 

the potential temperature θ, can be expressed 
as 

 or   (1.10) 

 
In the isentropic system, potential 

temperature serves as the vertical coordinate. 

Here pref = 1000 hPa denotes a reference 

pressure, R = 287 J/K.kg is the gas constant 

for dry air, and =1004 J/K.kg the specific 

heat of dry air at constant pressure.  

The vertical wind in isentropic 

coordinates is then defined as (Schär C. , 
2008) 

              (1.11) 

and is measured in [Ks
-1

]. For adiabatic flows 

for instance the vertical 

wind vanishes and the flow becomes quasi-

horizontal on the -surfaces. This is an 

important simplification in numerical 

implementation especially for idealized 

studies of adiabatic flows in isentropic 
coordinates. However, the invertibility 

condition of coordinate transformations 

requires that  and  are 

strictly monotonic functions, i. e.  

  and                 (1.12) 

Figure 1.  Vertical section of isentropic coordinates in 

(a) an idealized stratified flow over a 

mountain, and (b,c) in a frontal zone. Panel 

(c) show how the lower boundary condition 

may be represented by theta-layers of 

vanishing thickness (see Schär, 2009)  

 

In this adiabatic case some 

simplifying assumptions are also applied such 
as : neglect earth‟s rotation (f = 0), adiabatic 

flow is considered as , two-

dimensional flow in (x,z) plane, therefore 

, , and the lower boundary is an 

isentropic surface  

.  

These conditions are often not met in 

the lower troposphere or in the planetary 
boundary layer. Thus, isentropic coordinates 

are not suited for realistic weather prediction 

or climate model, or only in combination with 
other coordinates (e.g. σ – p – θ-hybrid 

coordinate). An additional disadvantage of 

isentropic coordinate is due to notorious 

difficulties at the lower boundary. For certain 
idealized problems (such as adiabatic flows 

past mountain ridges) the lower boundary may 

be represented by a surface of constant 
potential temperature (Fig. 1.a). In general, 

however, atmospheric flows are baroclinic 

(e.g. horizontal temperature gradients in 

frontal zones) and the lower boundary 
contains some temperature contrast (Fig.1.b). 

In these cases, near-surface isentropic layers 

may be represented as collapsed massless 
layers (Fig.1.c), which yields a difficult 

numerical problem.  

 

2. ISENTROPIC FORM OF 

GOVERNING EQUATIONS 

 

In this project work, an isentropic 
model for an adiabatic, two-dimensional flow 

over a bell shape mountain ridge  is 

presented. The equations for each isentropic 

layer are then formally identical with the 
shallow water equations.  

Firstly, the potential temperature 

(1.10) is used to eliminate pressure from the 
equation of state. Manipulation of the 

horizontal momentum equation 

 in the pressure 

coordinates after transformation of the 

pressure force in the isobaric form , 

and furthermore, by introducing 
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 and  , briefly, 

these steps yielding :  

  

     (2.1) 

 

   ,   

   (2.2) 

where          (2.3)   (2.3) 

is describing the Montgomery potential that 

plays the same role as the geopotential in 

pressure coordinates (in some references this 
also similar with Montgomery streamfunction 

ψ, see i.e in Holton, 2004). To define the 

isentropic mass density (or isentropic density), 
it is common to use sigma coordinate  

   whereupon . The 

isentropic density  plays the same role as 

density  in z-coordinate. Thus, the isentropic 

continuity equation from the z-coordinate is 

stated as 

 (2.4) 

and the hydrostatic relation in the isentropic 

model is expressed as the Exner function 

(Holton, 2004) : 

      with        (2.5) 

As with the shallow water system, 
equation (2.2) and (2.4) can be combined and 

therefore resulted a conservative flux of the 

momentum equation in the x-direction : 
 

    

 
 

                                                                (2.6) 

 

Regarding the boundary condition 
problems, in the isentropic model therefore 

we assume that the domain is confined at the 

surface and the model top by quasi-horizontal 

surfaces of constant potential temperature   

and  , respectively. We also may assume 

that the top surface is horizontal (rigid lid) and 
characterized by constant pressure, i.e. 

 and at the lower 

boundary, the height of topography 

determines the geopotential, as in pressure 

coordinates, i.e.    

 

Figure 2. Gravity wave caused by adiabatic flow 

past a hill. Flow is from left to right. 

Potential temperature denotes as thin blue 
lines and horizontal wind as thick red 

lines. (see Schär, 2009, exercise part.) 

 

3. NUMERICAL METHOD 

 

The momentum equation in advective 

(2.2) or flux form (2.6), the continuity 

equation (2.4), the hydrostatic relation (2.5), 

the definition of the isentropic density , and 

the boundary condition together yield a 

complete prognostic set of governing 

equations. Here a simple numerical scheme is 

presented that employs ideas familiar from the 

treatment of the shallow water equations. In 

addition to the horizontal staggering, the 

variables are also staggered in the vertical 

direction as described below 

Figure 3.Staggering of the variables in horizontal 

and vertical dimensions. These are 

applicable for ui+1/2,k horizontal wind, 

σi,k for isentropic density, Mi,k for 

Montgomery potential,  pi,k+1/2 for 

pressure, and for Exner function  

i,k+1/2. 
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Discretization of those equations using 

centered finite different (Fig. 3), yield: 

 
  

  

 

 , where nz = number of 

vertical layers.  

Montgomery potential is discretized as : 

  

All the discretizations have been done 

in the matlab code run and resulting model 
outputs which are presented in the following 

part.  

Initial conditions had been set up as 
the model has been started with a one-

dimensional profile where the layer thickness 

was set constant. The next step is then to 

calculate the topography where the mountain 
has been projected as bell shape function to 

represent terrain profiles. Evaluations of wave 

drag as a function of mountain height will be 
presented and discussed. The initial vertical 

stratification is given by the Brunt-Väisälä 

frequency. The model can then be improved 
by using relaxing lateral boundary conditions 

and absorbing boundary at the top of the 

isentropic profile.  

 

4. RESULT AND DISCUSSION 

 

As stated at the beginning, the terrain 
of the earth influences the atmospheric flow at 

all levels and on scales ranging from the 

sheltering effect of small rocks to planetary 

waves generated by the mountain ranges. The 
terrain can influence the atmosphere in 

various ways. The wind may be obstructed 

directly by mountains and the mountains can 
generate gravity waves or inertial waves that 

propagate in all directions far away from their 

source. The mountains also affect the 
horizontal and vertical distribution of solar 

heating in the troposphere and through their 

effect on the vertical flow field. If a particle of 

air is displaced vertically from its level of 
equilibrium it returns back in an oscillating 

movement around its original level. These 

oscillations are usually called mountain 
waves. 

In this part, the outputs of isentropic 

model experiment are visualized in two 

dimensional space (x,z) and the evolution of 
atmospheric flow in time for each level and 

distance are presented by hövmoler diagram 

for velocity (x,t) or (z,t). Hövmoller diagram 

is a good method to visualize wave 
propagation along time evolution. 

Fig.4 shows examples of a gravity 

wave evolution. The stable air flowing over a 
topographic barrier causes the atmospheric 

standing waves the so called mountain wave. 

By definition, the atmosphere becomes 

unstable when isentropes become vertical.  
This wave being hydrostatic means 

that there is only one oscillation. Firstly, the 

wind is weak on the upstream side as expected 
in a blocking. The strongest winds are found 

over the lee slopes, but the storm does not 

extend far away from the mountains as which 
also depicted in Fig. 7 using periodic scheme 

either relaxation method. The nature of such 

waves is that the flow is fast where its 

movement is downward but slow where the 
flow ascends. Consequently there is fast flow 

on the lee slope of the mountain. In these 

graphs, horizontal wind denoted by red line 
refers to fast flow and green line describes 

slow flow. From that, it can be seen that a 

gravity wave appears after the first 2.5h (900) 
and more pronounce after 7.5h of simulations 

while vertical propagating waves can also be 

observed within the first wavelength of the 

mountain ridge barrier. Fig. 5-6 confirmed the 
evolution of velocity in each level as well as 

investigation through specific axis-point. It 

shows that in the lower level, the wind 
velocity is damped in front of mountain 

(upslope) and become faster in the back 

mountain (downslope). In many cases, these 

behavior could be observed by cap clouds 
indicate likely wave activity downstream. 

They often appear along mountain ridges as 

air is forced up the windward (upslope) side. 
But, it should be remembered that while cap 

clouds indicate likely wave activity absence, it 

does not mean that waves are absent too. It 
depends on the humidity or dry condition of 

the air flowing mountain. The vertically-wave 

propagating wave is also often most severe 

within the first wavelength downwind of the 
mountain barrier. These waves frequently 

become more amplified and tilt upwind with 
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height which is very dangerous to and can 

cause aircraft to experience turbulence at high 

altitude. 
In this simulation, the gravity wave 

does not propagate further creating lee wave 

trains (long distance propagation of gravity 

waves) due to breaking wave after 17.5 hour 
simulation at 8-9 km height. As naturally, 

vertically-propagating waves with sufficient 

amplitude may break in the lower 

troposphere, and theoretically can result 
turbulence within wave breaking region and 

nearby. If the propagating wave does not 

break, an aircraft would likely experience 

considerable wave action with a little 
turbulence.

 
Figure 4. Isentropes obtained by numerical simulation with periodic lateral boundary at t = 2.5h(900), 

t=7.5h(2700), t=10h(3600) and t=17.5h(6300) and initial velocity 10ms-1. Blue lines indicated 

potential temperature, and horizontal wind denoted by red line (stronger velocity) and green line 

(weaker velocity) 

 
 
 

 
 
 

 

 

 
 

 

 

 

 

 

 

 

Figure 5. Hövmoller diagram describe ime-height cross section of velocity changes at specific point 

of horizontal distance. 
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Figure 6. Hövmoller diagrams of velocity changes due to time evolution for each level of height 

along the horizontal distance. 

 

 

 

 

 

 

 

 
 

 

  

 

 

Figure 7. The differences result of numerical simulation using periodic (left) and relaxation (right) 

lateral boundary condition. 

 

Additionally, in this simulation, the 
gravity wave as well as mountain wave can be 

observed well both using relaxation and 

periodic lateral boundary condition (Fig.7). 

Relaxation has been used here by absorbing 
wave energy along the boundary at the top of 

the isentropic profile. Simulation using 

relaxation mode therefore gives more realistic 
features.   

Fig. 8 show that both mountain waves 

and downslope windstorms are sensitive to the 
size and the shape of the mountains (in this 

simulation is refers to the mountain height). 
The higher and bigger mountain may have 

stronger amplification and wave propagation 

as well as effect on the gravity wave 

generation and the lee velocity wave. For 
strong mountain waves and downslope 

windstorms to develop the wind should be 

directed roughly perpendicular to the 
mountain ridge. The wind speed should 

exceed about 20 ms
-1

 and there should be a 

stable layer not far from the mountain top 
level in the upstream temperature profile. 
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Figure 8. The simulation of sensitivity of gravity wave due to the mountain bell shape. Left panel 

show simulation at t = 2.5h(1800) and right panel show simulation at t=5h(3600) for 

mountain height h=500m (upper panel), h =750m (center) and h =1000m (bottom panel). 

Figure 9. Windstorm obtained by numerical simulation with relaxation lateral boundary in the 
different mountain bell height. Simulation at t = 2.5h(1800) for mountain height h = 500m 

(left) and h = 1400m (right) with initial velocity 20 ms-1. 

 
The mean wind speed on the 

downslope (some time called as lee slope) 

can easily be many times the wind speed on 

the upstream side of the mountain. If the 

mountain waves are steep they may break in 

a similar manner as waves do on a beach 
(Fig 8). Strong downslope wind cases are 

usually associated with strong cross-barrier 

flow, waves breaking aloft, and an inversion 

near the barrier top. This may be double the 
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wind speed at mountaintop level. Strong 

turbulence and wind shear at the surface are 

then associated with this high wind, causing 
significant danger to aircraft and damage at 

the surface too. In some cases, there is also 

strong turbulence in rotors that sometimes 

form in the wave field in the lee of the 
mountain below mountain top level. Gusts in 

downslope windstorms can easily be more 

than twice as strong as the 10 min average 
wind speed, making gustiness a 

characteristic of these storms and often 

abruptly end at the “jump region”, although 

more moderate turbulence can exist 
downstream. 

Unfortunately, this work failed to 

simulate „jump‟ phenomena that also very 
important in the mountain waves simulation.  

 

5. CONCLUSION 

 

From this early work, some 

conclusions are obtained due to the study of 

flow over the mountain ridges using 
isentropic model: 

 

 A parcel of air within a stable air mass 

over a mountain will undergo wave 
motion. 

 The resulting wave is gravity wave with 

up and downslope motions. 

 Gravity waves can grow in amplitude 

until they „break‟ into turbulence. 

 If the magnitude of wind shear exceeds 

a critical value, turbulence will occur. 

 

For the future work, it is important 

to investigate the wave characteristics by the 

Froude number adjustment in order to define 
vertically-propagating gravity wave. The 

Froude number expresses the ratio between 

kinetic energy (wind speed) and potential 

energy (stability times mountain height). 
Comparing the model simulation with 

observation such as using the satellite or 

wind radar analysis can also very important 
to develop an integration operational 

technique used to detect mountain wave 

signature.  
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