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ABSTRACT 
 
Flooding is a recurring issue in North Barito Regency due to the overflow of the Barito River. Weather forecasts 
in the region rely mainly on Numerical Weather Prediction (NWP) models, which often fail to capture local details 
due to their grid-based homogenization. To address this limitation, statistical techniques such as Model Output 
Statistics (MOS) can enhance NWP outputs by representing local conditions more accurately. MOS establishes 
statistical relationships between response variables (predictands) and predictor variables derived from NWP 
outputs, enabling operational applications without the need for advanced instruments. This study utilizes rainfall 
data from 2021-2022 from the Beringin Meteorological Station in North Barito as the response variable, while 
data from the Integrating Forecasting System (IFS) model serve as the predictor variables. The Support Vector 
Machine (SVM) method is employed to identify the relationship between predictor and response variables. By 
integrating the MOS technique with the SVM method, this research aims to improve the accuracy of weather 
forecasting, particularly for short-term predictions in North Barito. This approach demonstrates the potential to 
enhance localized weather predictions by addressing the limitations of conventional NWP models. The results 
indicate a consistent reduction in RMSE across all experiments conducted. Furthermore, the SVM model showed 
notable improvements in bias values and exhibited a stronger correlation compared to the original outputs from 
the IFS model. The percentage improvement (%IM) in rainfall forecasts, following correction using the SVM 
model, increased by 5.03%. The percentage improvement (%IM) in rainfall forecasts, following correction using 
the SVM model, increased by 5.03% for use as a predictor variable in the applied SVM method. In contrast, a 
combination of surface pressure, temperature across various layers, and rainfall proved to be the the most effective 
input variables for enhancing the accuracy of weather forecasting in North Barito using the SVM model. 
 
Keywords: Integrating Forecasting System, Model Output Statistics, Support Vector Machine, Barito Utara, 
rainfall prediction 
 

 
1. Introduction 
 
The Regional Disaster Management Agency (BPBD) 
of Barito Utara Regency, Central Kalimantan, reports 
that hydro-meteorological disasters occur almost 
every year, particularly floods caused by heavy 
rainfall in North Barito Regency. Most flood result 
from the overflow of the Barito River, the longest 
river in Central Kalimantan [1] which flows through 
the region. While much of North Barito consists of 
lowlands, the region also features small hills and 
scattered mountains. This geographical variation 
influences rainfall patterns, as convective 
precipitation systems interact with diurnal cycles 
[2,3,4] and impact global atmospheric circulation [5]. 
The Beringin Meteorological Station is responsible 
for providing meteorological data for aviation and 
public weather services to stakeholders in North 
Barito. However, its observational and weather 
modeling facilities remain limited. Several global 
Numerical Weather Prediction (NWP) model datasets 

currently used by Indonesian Agency for 
Meteorology, Climatology, and Geophysics (BMKG) 
have been evaluated across 34 locations, each 
representing a province in Indonesia [6]. The findings 
indicate that the Integrated Forecasting System (IFS) 
model from the European Centre for Medium-Range 
Weather Forecasts (ECMWF) demonstrates the best 
performance compared to three other models. It 
consistently outperforms them in most regions of 
Indonesia. Despite its relative accuracy, IFS 
performance in Central Kalimantan remains low, with 
only 33% accuracy. This limitation arises because 
IFS is a global model, while weather conditions in 
Central Kalimantan are influenced by phenomena 
ranging from global to local scales [5,7,8]. NWP 
models calculate weather conditions by dividing the 
Earth into grids, with each grid representing a specific 
area [9]. However, this grid-based approach 
homogenizes weather values across the grid, making 
it unable to capture localized details such as 
topography, vegetation, soil type, and small water 
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bodies. These local features are highly variable and 
can significantly influence weather patterns [10]. This 
limitation underscores the need for an efficient 
computational approach that better represents local 
conditions in North Barito, particularly for short-term 
weather forecasting. 
 
Statistical methods, such as Model Output Statistics 
(MOS), address this issue by establishing 
relationships between observational data and NWP 
outputs. MOS has been widely applied to 
meteorological variables, including rainfall 
probability estimation [11] and improving model-
based rainfall forecasts [10]. As a regression-based 
model, MOS develops statistical links between the 
predicted variables (predictands) and predictor 
variables from NWP outputs at various projection 
times [12]. Using multiple linear regression, MOS 
connects response and predictor variables, allowing 
the estimation of predictands as a linear combination 
of predictors [11]. The method is operationally 
efficient and does not require high-specification.  
 
Rainfall being a non-linear weather parameter, 
necessitates a non-linear method to model the 
relationship between predictors and the response 
variable. In this study, rainfall serves as the response 
variable, with Support Vector Machine (SVM) 
employed to identify the relationship. SVM is a 
machine learning technique used for both 
classification and regression. It effectively handles 
linear and non-linear problems, making it suitable for 
meteorological applications [13,14]. Previous studies 
have applied SVM for tasks such as real-time 39-hour 
rainfall forecasting to enhance flood prediction 
accuracy in southwest Japan [15] and monthly 
average temperature and rainfall prediction at 45 
weather stations in Thailand [16]. Comparative 
studies have shown that SVM outperforms methods 
like Artificial Neural Networks, Random Forest, and 
Multivariate Linear Regression in meteorological 
applications [17,18,19]. This is attributed to its 
simpler data processing scheme and its ability to find 
a global optimal solution. Unlike simpler methods 
such as Naive Bayes, SVM provides optimal results, 
particularly in cases with limited and high-
dimensional data [13,14,20]. Building on this 
foundation, this study integrates the MOS technique 
with the SVM method to enhance short-term weather 
forecasting accuracy in North Barito. The approach 
aims to address the limitations of existing models and 
improve the representation of local weather 
conditions in the region. 
 
2. Data and Methods 

 
This study utilized IFS model data from ECMWF as 
predictor variables, including air temperature, 
relative humidity, pressure, rainfall, and wind, for the 
period of 2021–2022, with a spatial resolution of 

0.125° × 0.125°. The response variable was derived 
from 3-hourly observational rainfall data recorded at 
the Beringin Meteorological Station in North Barito, 
Central Kalimantan. Additionally, Global 
Precipitation Measurement (GPM) rainfall data, with 
a spatial resolution of 0.1° × 0.1° and a temporal 
resolution of 30 minutes, was obtained to perform 
spatial verification of the model’s rainfall forecast 
results. Furthermore, the average weather conditions 
in North Barito over a 30-year period were analyzed 
using ERA-5 reanalysis data, which has a spatial 
resolution of 0.25° × 0.25°. The parameters 
considered included the U and V components of 10-
meter wind, total precipitation, 2-meter air 
temperature, and mean sea level pressure, with 
monthly averages from 1994 to 2023. 
 
Table 1 Inclusion of Predictor Variables for Rainfall 

Response Variables at Each Experiment 

 
The collected data were divided into predictor 
variables from the IFS model and response variables 
(ground truth) from observational data, which served 
as the reference for prediction verification. The 
predictor variables were categorized into three 
experimental groups, as outlined in Table 1. Data 
cleaning was performed to address outlier issues and 
handle missing values. Additionally, data 
normalization was conducted to standardize the scale 
or range of values for each feature in the dataset. This 
scaling adjustment ensured a uniform format that 
could be effectively processed by the SVM model. 
The purpose of data standardization was to ensure 
that each variable had a balanced influence in the 
analysis and modeling process. Prior to model 
development, the data were standardized to have a 

Predictor 
Variables Level 

Experiment 
1 2 3 

Pressure Surface Yes Yes Yes 
Rainfall Surface Yes Yes Yes 

Temperature 1000 mb Yes Yes No 
 850 mb Yes Yes No 
 700 mb Yes Yes No 
  500 mb Yes Yes No 

U Wind 1000 mb Yes No Yes 
 850 mb Yes No Yes 
 700 mb Yes No Yes 
 500 mb Yes No Yes 
  10 m Yes No Yes 

V Wind 1000 mb Yes No Yes 
 850 mb Yes No Yes 
 700 mb Yes No Yes 
 500 mb Yes No Yes 
  10 m Yes No Yes 
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mean of zero and a standard deviation of one. Once 
the model was developed, the predicted values were 
de-standardized using the original mean and standard 
deviation of the data. After the SVM model generated 
outputs, these normalized values were converted back 
to their original scale through a denormalization 
process. 
 
The standardized data from the preprocessing stage 
were randomly split into training and test sets in an 
80:20 ratio. Specifically, 80% of the total data were 
used for training, while the remaining 20% were 
allocated for testing in both the one-year (2021) and 
two-year (2021 and 2022) experiments. The exact 
number of data points used in the training and testing 
phases is presented in Table 2. During the training 
process, parameter tuning was performed to achieve 
optimal accuracy by testing multiple parameter 
combinations. The most suitable parameter values for 
model development were determined using a random 
search approach. At this stage, Support Vector 
Regression (SVR) with a Radial Basis Function (RBF) 
kernel was applied, utilizing parameters such as C, 
gamma (γ), and epsilon (ε). The RBF kernel was 
selected due to its effectiveness in handling non-
linear data. By mapping the input data into a higher-
dimensional space, the RBF kernel enables the 
separation of data points that are not linearly 
separable in the original space [16]. 
 

Table 2 The Number of Data Division 
Year 

Length Year Training Testing Total 

1 2021 551 2204 2725 

2 2021 to 
2022 1053 4210 5263 

 
The SVR model obtained from the training process is 
then used for regression on the test data. The testing 
phase evaluates the model’s ability to predict or 
perform regression on previously unseen data. This 
provides an indication of the model's real-world 
performance and assesses its generalization 
capability from the training dataset to new data. 
Testing is crucial to ensure that the model does not 
merely memorize the training data but can also make 
accurate predictions for new inputs. 
 
The next step is to evaluate the test results of the 
Model Output Statistics (MOS) forecasting using 
machine learning performance metrics. Several 
statistical measures are employed to assess the 
modeled rainfall, including Root Mean Square Error 
(RMSE), bias, correlation coefficient (R), and 

percentage improvement. If the performance metrics 
achieve the desired values, the model can proceed to 
the next stage. However, if the results are still 
unsatisfactory, parameter tuning is conducted by 
experimenting with different parameter combinations 
to optimize model performance until better results are 
obtained. 
 
Once the model has demonstrated satisfactory 
performance, it is applied for rainfall prediction. The 
model outputs are stored in scalar format, enabling 
their application to new data. Newly extracted IFS 
model data is used to obtain meteorological variables 
that correspond to those utilized in the SVM model 
training phase. These extracted variables are then 
processed to generate predictive features, which are 
compiled into a single dataset organized in a 
DataFrame format. Subsequently, the dataset is 
normalized using the previously stored scalar values 
to ensure consistency with the scale applied during 
model training. 
 
After normalization, the trained and stored SVR 
model is used to make predictions. The normalized 
input data is fed into the model, producing predictive 
results that estimate rainfall at specific locations and 
times. These predictions are then transformed back 
into a two-dimensional format, aligning with the 
appropriate longitude and latitude grids for 
visualization. Finally, the predicted rainfall 
distribution is mapped to provide a spatial 
representation of forecasted precipitation in the study 
area. These predictive results serve as the basis for 
further meteorological analysis, ensuring that the 
trained model is effectively applied to new data while 
generating interpretable geographic predictions. 
 
Result and Discussion 
 
This chapter presents the results and analysis of this 
study, which investigates improvements in short-term 
weather forecasting using Model Output Statistics 
(MOS) techniques with Support Vector Machine 
(SVM) methods. The discussion begins with an 
analysis of the characteristics of several 
meteorological parameters at the study location, 
serving as the foundation for defining predictor input 
experiments in model development. Next, the 
evaluation results comparing the original IFS model 
data with the forecasted outputs are examined. Finally, 
a short-term weather forecasting experiment is 
conducted to predict weather conditions for the next 
12 hours. 
  



JURNAL METEOROLOGI DAN GEOFISIKA VOL. 25 ED. 2 2024: 113 - 121 
116 

 
Figure 1 The average (a) 2 meter temperature, (b) sea level pressure, (c) rainfall over 30 years. The red box 

refers to the study area and the blue dot indicates the location of the Beringin Meteorological Station.  
 
Weather Characteristics at the Study Area. The 
weather characteristics in the study area were 
analyzed using ERA-5 reanalysis data over a 30-year 
period from 1994 to 2023. The average 2-meter air 
temperature in North Barito reached approximately 
28.6°C across most of the region, as illustrated in 
Figure Ia. This is consistent with North Barito’s 
equatorial location, which contributes to higher 
temperatures. Warmer air temperatures were 
observed in the central and southern parts of North 
Barito, whereas relatively cooler temperatures were 
found in the northern region. 
 
This temperature distribution exhibits a correlative 
relationship with the sea level pressure pattern shown 
in Figure Ib. Areas with lower air pressure values 
correspond to regions with higher air temperatures. 
However, the overall pressure differences across 
North Barito are not substantial, indicating a 
relatively stable pressure system, particularly during 
warmer seasons. Figure Ib also illustrates that the 
average wind speed in the study area remains low, 
ranging from 1 m/s to 2 m/s. This observation aligns 
with data from meteorological stations, which 
consistently record similar values. The topographical 
characteristics of North Barito, consisting 
predominantly of lowlands with small hills, do not 
create significant local wind patterns. Additionally, 
the presence of extensive vegetation may contribute 
to reduced wind speeds by obstructing airflow. 
Rainfall in the study area is frequently influenced by 
local atmospheric circulation, which triggers 

convective processes. These conditions can enhance 
atmospheric instability, particularly during nighttime, 
thereby impacting precipitation patterns in North 
Barito [2,4]. 
 
In general, experiments using two years of input data 
demonstrated better performance compared to those 
utilizing only one year of input data. A longer data 
period provided a broader representation of weather 
conditions, allowing the model to capture stronger 
and more accurate relationships between predictor 
and response variables. This improved the statistical 
relationships estimated by the model, making them 
more representative than those derived from a single 
year of data. 
 
Moreover, interannual and intra-annual variations in 
weather patterns can occur. By incorporating a longer 
dataset, the model can learn to recognize and predict 
these variations more effectively. Evaluating model 
performance using two years of test data is also more 
objective, as it assesses the model's ability to 
generalize over a longer period rather than being 
limited to short-term variations. 
 
The average rainfall in the study area, illustrated in 
Figure Ic, ranges between 7–13 mm. Higher rainfall 
is predominantly observed in the northern region 
compared to the southern region, with values ranging 
from 9–13 mm in the north and 7–10 mm in the south. 
The higher rainfall in the northern part is consistent 
with the region’s bimodal rainfall pattern, where the 
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rainy season exhibits two peaks annually [1]. 
Additionally, rainfall in this area is classified as 
convective, often triggered by the presence of low-
pressure cells that develop due to strong solar heating 
(insolation) [21, 22]. 
 
The four meteorological parameters discussed above 
were used as predictor variables in the SVM model. 
Several variables from the IFS model data were 
selected as inputs, including surface pressure, rainfall, 
temperature, wind components (U and V) at multiple 
atmospheric levels (1000 mb, 850 mb, 700 mb, and 
500 mb), and wind components (U and V) at 10-meter 
height. These variables were categorized into three 
experimental groups to determine which parameters 
were most relevant for short-term weather forecasting 
in North Barito. 
 
The selection of surface pressure as a parameter in 
this study is crucial for understanding general 
atmospheric circulation based on the geostrophic 
principle. This principle aids in predicting the 
barotropic component of atmospheric flow, which 
often dominates the total flow [23]. Additionally, 
meteorological parameters are commonly analyzed at 
multiple pressure levels (e.g., 1000 mb, 850 mb, 700 
mb) to provide a comprehensive three-dimensional 
representation of their distribution across different 
elevations [24]. In this study, wind and temperature 
were selected as key parameters to examine the 
vertical structure of the atmosphere at the research 
location. Winds and temperatures at various pressure 
levels serve as input variables to represent vertical air 
movement, capturing both upward and downward 
circulation in response to temperature variations at 
each atmospheric layer [25]. 
 
Evaluation of Model Outputs with IFS. The 
evaluation of RMSE, bias, and correlation 
coefficients was conducted to assess the performance 
of the SVM-based rainfall forecasts compared to the 
original rainfall values from the IFS model. The 
RMSE values for the original IFS model and the 
SVM-adjusted forecasts are presented in Figure 2. 
The results indicate a consistent decrease in RMSE 
when using the SVM model across all three 
experimental setups, for both the 1-year and 2-year 
experiments. 
 
For the IFS model data, the RMSE was 9.366 mm in 
the 1-year experiment and 8.417 mm in the 2-year 
experiment. The largest RMSE reduction was 
observed in Experiment 2, with RMSE values 
decreasing to 8.875 mm (1-year) and 8.347 mm (2-
year). Experiment 1 recorded the second-highest 
RMSE reduction, with values of 8.895 mm (1-year) 

and 8.328 mm (2-year). Finally, Experiment 3 
showed the lowest RMSE reduction, with RMSE 
values of 8.908 mm (1-year) and 8.380 mm (2-year). 
 
The percentage improvement (%IM) achieved by the 
SVM model compared to the original IFS values 
showed positive gains across all experiments. In the 
1-year experiment, the highest improvement was 
observed in Experiment 2 (5.24%), followed by 
Experiment 1 (5.03%) and Experiment 3 (4.79%). 
Conversely, in the 2-year experiment, the order of 
highest improvements differed, with Experiment 1 
(1.06%) ranking first, followed by Experiment 2 
(0.83%) and Experiment 3 (0.44%). These findings 
align with the study conducted by Idowu and 
Rautenbach (2009) [10], which also demonstrated 
improvements in weather forecasting when applying 
the MOS technique. The evaluation based on bias 
values, presented in Figure 3a, also demonstrated 
improvements in both the 1-year and 2-year 
experiments. The bias in the original IFS model was 
-1.493 mm for the 1-year experiment and -0.841 mm 
for the 2-year experiment. When applying the SVM 
model, Experiment 2 showed the greatest 
improvement in bias reduction compared to 
Experiments 1 and 3 across both experimental periods. 
The bias values obtained using the SVM model were 
-0.076 mm for Experiment 1, -0.012 mm for 
Experiment 2, and -0.161 mm for Experiment 3 in the 
1-year experiment. In the 2-year experiment, the 
values were -0.044 mm for Experiment 1, -0.029 mm 
for Experiment 2, and -0.167 mm for Experiment 3. 

Similarly, the correlation coefficient in the original 
IFS model was 0.058 in the 1-year experiment and 
0.098 in the 2-year experiment. The application of the 
SVM model led to a notable increase in correlation 
values, with Experiment 2 again exhibiting the 
highest improvement compared to the other two 
experiments. In the 1-year experiment, the correlation 
values were 0.141 for Experiment 2, 0.120 for 
Experiment 1, and 0.116 for Experiment 3. In the 2-
year experiment, the correlation values were 0.191 for 
Experiment 2, 0.186 for Experiment 1, and 0.138 for 
Experiment 3. These findings align with previous 
research, including studies by Yin et al. (2022) [15] 
and Aksornsingchai & Srinilta (2011) [16], which 
also demonstrated improvements in correlation when 
applying SVM models to weather forecasting. 
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Figure 2. RMSE values between IFS model and SVM model results for three input variable experiments. 

 
Overall, experiments utilizing 2 years of input data 
exhibited better performance compared to those using 
only 1 year of data. A longer input period provided a 
more comprehensive representation of weather 
variability, allowing the model to capture stronger 
and more accurate relationships between predictor 
and response variables. The extended dataset enabled 
the model to learn weather patterns and variations 
over a longer period, leading to better statistical 
relationships than when using only 1 year of data. 

 
A longer training period also improved the model’s 
ability to generalize more effectively, making model 
performance evaluation more objective when tested 
over a longer period. This indicates that a greater 
amount of historical data contributes to better 
predictive capability and enhances the reliability of 
the model’s rainfall forecasts. 

 

 
Figure 3 Comparison of bias (left) and correlation (right) values of IFS and SVM model results for 3 input 

variable Experiments. 

Based on the evaluations of RMSE, bias, and 
correlation, Experiment 2 consistently outperformed 
the other experiments in improving values from the 
original IFS model. This experiment utilized input 
data consisting of surface pressure, temperatures at 

1000 mb, 850 mb, 700 mb, and 500 mb layers, along 
with rainfall. Notably, it did not include wind 
variables, which suggests that the absence of wind 
components contributed to its improved performance. 
This finding aligns with the weather characteristics of 
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North Barito, where the average wind speed is very 
low. 

The lower model performance observed in 
Experiment 3 further supports this conclusion. 
Experiment 3 included surface pressure, U and V 
wind components at 1000 mb, 850 mb, 700 mb, and 
500 mb layers, U and V wind components at 10 
meters, and rainfall. The presence of wind variables 

in this experiment did not enhance the model’s 
predictive capability, leading to a weaker 
performance compared to the other two experiments. 
These results indicate that wind variables did not 
significantly influence the SVM model’s predictions 
in North Barito, reinforcing the idea that temperature 
and surface pressure are more relevant predictors for 
rainfall forecasting in this region. 

 

  

  

  

  
Figure 4 Comparison of 12-hour ahead rainfall forecasts from the GPM data (left) and SVM (right).  

Rainfall Forecasting. After obtaining the best-
performing model, the next step was to spatially 
predict rainfall for the next 12 hours. The SVM model 
was applied to predict IFS data from December 23rd, 
2022, at 00:00 UTC for the following 12 hours. The 
results, shown in Figure 4, present a comparison 

between rainfall from GPM data and rainfall 
predicted by the SVM model. During 03:00 UTC, the 
GPM data reveals notable rainfall activity in the 
Barito Utara region, particularly concentrated in the 
eastern part, as highlighted by the red box. This 
indicates localized heavy rainfall in that area. In 



JURNAL METEOROLOGI DAN GEOFISIKA VOL. 25 ED. 2 2024: 113 - 121 
118 

contrast, the SVM model predicts a broader 
distribution of rainfall across most of the study region. 
This suggests that while the model effectively 
captures the general rainfall occurrence, it tends to 
overestimate the spatial extent of the precipitation 
compared to the actual observations. Moving to 06:00 
UTC, both the GPM data and the SVM model output 
indicate the absence of significant rainfall throughout 
the region. This alignment suggests that the model is 
capable of accurately identifying periods of minimal 
or no rainfall, reflecting its reliability during drier 
conditions. Turning to 09:00 UTC, the GPM data 
shows a shift in rainfall patterns, with precipitation 
detected in the northern and southwestern parts of 
Barito Utara. However, the SVM model only 
identifies rainfall in the northern region, failing to 
capture the southwestern rainfall observed in the 
GPM data. Despite this limitation, the SVM model 
demonstrates strong predictive capability by 
accurately detecting rainfall in the northern area ar 
12:00 UTC, as evidenced by the similarity in spatial 
patterns highlighted by the green features in both 
datasets. This indicates that while the model has some 
difficulty capturing all localized rainfall events, it 
remains effective in identifying major rainfall 
occurrences within the study area. 
 
3. Conclusion 
 
The implementation of MOS techniques using an 
SVM model demonstrated that several factors 
influence model performance, including input 
variables and the research time period. The SVM 
model successfully improved rainfall forecasts in 
North Barito, as indicated by decreased RMSE values 
across all Experiments. Additionally, bias 
improvements and increased correlation values were 
observed when using the SVM model compared to 
the original IFS model output. Among the three 
Experiments, Experiment 2 consistently performed 
the best, although the general prediction pattern 
aligned well with actual data in all cases. Wind data 
was found to be less relevant as a predictor variable 
in the SVM model for North Barito, which aligns with 
the region’s typically low wind speeds. This explains 
why Experiment 3, which included surface pressure, 
rainfall, and wind components, yielded the lowest 
performance among the three Experiments. In 
contrast, temperature variables, when used alongside 
surface pressure and rainfall as predictor variables, 
produced the best model performance. This suggests 
that the combination of surface pressure, temperature 
at multiple atmospheric layers, and rainfall is the most 
relevant set of input variables for SVM-based weather 
forecasting in this region. Furthermore, experiments 
using two years of input data consistently 
outperformed those using only one year, reinforcing 
the importance of a longer dataset in improving 
model accuracy and capturing weather variability. 
 

Suggestion  
 
This research needs to undergo further processes to 
be operationalized in other areas. Some suggestions 
that can be carried out are adding more study 
locations around North Barito or other areas, so it is 
not only using 1 ground truth. Additional input 
periods are also needed so that the model can learn 
weather patterns and variations over a longer period 
of time. It is also necessary to conduct experiments 
on other predictor variables from NWP models or 
satellite data that are not available at operational 
stations to enrich the model input information.  
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