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ABSTRACT 

 

Climate interaction directly correlates with an individual's comfort response. One's comfort can be quantified by 

perceiving environmental conditions at tourist locations. This study aims to identify climatic and non-climatic 

factors that affect thermal comfort based on visitor perception. In addition, the Holiday Climate Index (HCI) is 

modified to equalize visitors' perceptions. The research locations, namely Taman Mini Indonesia Indah (TMII), 

Kebun Raya Bogor (KRB), and Taman Safari Indonesia (TSI), are characterized by distinct topographies. This 

study identifies thermal comfort factors based on 552 questionnaire responses from purposive sampling. Analyzing 

factors influencing thermal comfort using ordinal logistic regression with Uncomfortable Class (0) and 

Comfortable Class (1). Model performance metrics, such as accuracy, precision, recall, and F1 score, are calculated 

using a confusion matrix. In general, the best time to feel comfortable is in the morning. Overall, climatic factors 

such as thermal sensation and rainfall events influence thermal comfort, while non-climatic factors have no effect. 

The model's implication is to provide an equation in the probability of someone feeling comfortable or 

uncomfortable based on the predictors. Furthermore, a modification index at TMII adjusted the HCI-urban's 

weighting, ratings, and comfort thresholds to match visitors' perceptions at that time. The results demonstrate that 

HCI-urban effectively provides comfortable and comfortable assessments. However, it has not yet been able to 

capture perceptions of discomfort, unlike the modified index. This research can provide added value to the tourism 

industry in terms of maintaining environmental comfort during the dry season. 
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1. Introduction 
 

Tourism is closely related to the business sector [1] 

and the diversification of tourist destinations [2]. 

Moreover, tourism can potentially drive a country’s 

economic engine [3]. The economic impact resulting 

from tourist visits manifests in the increased 

development of comprehensive facilities and 

infrastructure [4]. Discussing tourism inevitably leads 

to considerations of the destinations people visit. 

Indonesia boasts a diverse range of tourism types, 

including cultural, local wisdom, natural attractions 

and tourist villages. The nexus between tourism and 

weather parameters is inseparable, as both are 

decisive factors in the decision-making process for 

travel. Information regarding weather and climate, 

such as thermal comfort, is crucial for selecting 

tourist destinations that travellers intend to visit [5]. 

Choosing a tourist location may involve weather 

predictions to minimize errors in determining the 

timing of visits. Incorrect vacation timing can affect 

the biological comfort of travellers [6], indicating that 

climate parameters influence activities during 

tourism. Temperature, humidity, and rainfall can 

cause discomfort and have negative health effects [7]. 

Furthermore, another climate factor influencing 

tourists' decisions to visit is the duration of seasons 

[8]. In addition to climate factors, comfort 

perceptions are also influenced by the duration [9] 

and the design of airflow [10]. The comfort 

assessment depends on individual preferences for 

activities at a tourist location. Common activities 

during tourism include walking, jogging, and sitting, 

each with varying levels of metabolic activity. The 

higher the activity level, the greater the energy 

expended [11].   

 

The climate and non-climate parameters are 

inherently intertwined in shaping the perception of 

comfort during tourism. Comfort responses emerge 

from the interaction of weather and climate. Climate 

change poses a particular challenge, especially in the 

tourism sector, negatively impacting various climate 

parameters such as precipitation, radiation, and wind. 

When these parameters experience an increase, they 

contribute to altering the climate comfort in a location 

[12]. Similarly, a 1% increase in climate parameters 

such as air temperature and relative humidity 
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concerning to the average value also results in a 

1.37% decrease in foreign tourist visits to Indonesia 

[13]. 

 

Information derived from climate parameters is 

crucial for tourists, both in terms of timing and 

location. The presentation of such information aims 

to provide an overview of comfortable and 

uncomfortable places and periods based on numerical 

calculations of thermal comfort indices derived from 

climate data. Differences in thermal comfort 

perceptions at a particular location vary depending on 

climatic and non-climatic factors. These perceptions 

were assessed through surveys targeting both tourists 

and students. Comfort preferences depend on 

seasonal conditions, wind speed, and age [14]. 

Thermal comfort perceptions in outdoor spaces are 

also influenced by environmental temperature [15]. 

Elevated environmental temperatures, often 

attributed to physical development (urban 

morphology), can induce uncomfortable thermal 

sensations [16]. 

 

Several indices representing comfort have been 

extensively studied, such as the Universal Thermal 

Comfort Index (UTCI), Physiologically Equivalent 

Temperature (PET), and Temperature Humidity 

Index (THI) which consider indoor comfort [17], 

which consider indoor comfort. UTCI depicts human 

bioclimatic conditions outdoors [18] However, UTCI 

has limitations, as it assumes a constant metabolic 

rate and considers clothing types uniform with 

environmental temperatures [19]. PET is one index 

used in the context of urban design and human 

behaviour [20]. Practically, PET has yet to be applied 

in high humidity conditions without estimating 

humidity factors [21]. Another index relevant to the 

tourism sector is the Tourism Climate Index (TCI) 

introduced by Meickowski [22], with the most 

popular being the Holiday Climate Index (HCI) based 

on daily average data [23]. TCI has been studied for 

decades to determine the best times for tourism. In 

Indonesia, TCI has been analyzed concerning tourism 

visits to the Borobudur Temple area [24] and the best 

times for beach tourism [25] However, TCI data 

formatting uses monthly scales, while visitors often 

vacation on weekly or even daily scales. 

 

Unlike TCI, HCI is an index based on daily data, 

making it easier to calculate current and future 

comfort values [23]. HCI application is divided into 

two tourist locations: beach tourism (HCI-beach) and 

urban tourism (HCI-urban). HCI-urban use extends 

beyond city tourism to rural areas [26]. HCI can also 

be used to analyze the spatial distribution of comfort 

shifts in the future [27] and is closely related to tourist 

visits [28]. Each index has its strengths and 

weaknesses regarding subjectivity [29] and validation 

[30].  

HCI was developed in subtropical regions by 

adapting existing perceptions in those areas. Other 

studies on HCI often only calculate spatial and 

temporal distribution rather than evaluating the index 

at specific locations. However, HCI evaluation in 

tropical regions has yet to be comprehensively 

studied, especially concerning comparisons between 

HCI values and visitor perceptions. The first goal of 

the study is to identify climatic and non-climatic 

parameters influencing thermal comfort based on 

tourist perceptions at three tourist sites. The second 

goal is to present a modified thermal comfort index 

based on climate data for 15 years. This modified 

thermal index is then compared with the existing 

index and visitor perception. 

2. Methods 

 
This research was conducted in locations with 

varying elevations: Taman Mini Indonesia Indah 

(TMII), Kebun Raya Bogor (KRB), and Taman Safari 

Indonesia (TSI). TMII is one of the tourist 

destinations that embraces a modern-classic theme. 

The tourism concept offered at TMII leans more 

towards semi-outdoor activities, cultural landscapes, 

and education. TMII is situated at a low elevation, 41 

meters above sea level. In 2022, TMII was the second 

leading tourist destination in DKI Jakarta, with a 

visitation count of 1,057,316 people [30]. Nature-

based tourism design is predominant in KRB and TSI. 

KRB is topographically higher than TMII and is 

located in the Central Bogor District of Bogor City. 

The elevation difference between KRB and TMII is 

approximately 221 meters above sea level. 

Meanwhile, TSI's elevation reaches 1,190 meters 

above sea level, making it a preferred tourist 

destination, especially for the Jakarta surrounding 

area. Details of the research location are shown in 

Figure 1. 

 

The research was conducted from June 1 to August 

31, 2023. The data was divided into primary data 

(questionnaires) and secondary data (climate data). 

Preliminary data consists of perception data obtained 

through purposive sampling from tourists. Primary 

data collection was conducted twice daily, in the 

morning (09:00 – 10:00) and afternoon (12:00 – 

13:00). This writing will emphasize comfort 

perceptions based on the sensations of temperature, 

wind, clouds and rainfall events. Each parameter's 

perception has different levels. The total number of 

respondents during the three months was 552 local 

tourists. Each location consists of 184 respondents, 

with a distribution of 92 respondents each for 

morning and afternoon. The sampling criteria 

included a minimum age of 17, a high school 

education, and being a tourist.   
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Figure 1.  Research location 

 

Secondary data is divided into daily average climate 

data for 2008 – 2022 and used as the basis for index 

development and verification data. The first dataset is 

employed to understand profiles in a time series and 

data distribution. The second set, verification data, 

will be analyzed in histograms to facilitate the 

creation of classes for each sub-index. Data sources 

are from the Indonesia Agency for Meteorology, 

Climatology, and Geophysics (BMKG). Verification 

data is collected hourly from the Automatic Weather 

Station (AWS) BMKG. The AWS device's location is 

within the TMII area (East Jakarta). 

 

Meanwhile, the daily average time series climate data 

spanning 15 years is sourced from the Halim Perdana 

Kusuma Meteorological Station. The representation 

of TMII data is derived from weather observation 

stations close to the research site. The research site's 

varying elevations are illustrated in Figure 1. It is 

evident from the Data Elevation Model (DEM) that 

the TSI location is higher compared to the other two 

places. AWS data used include maximum 

temperature (Tmax), average temperature (Tavg), 

minimum temperature (Tmin), relative humidity 

(RH), total precipitation (RR), and wind speed (WS). 

Additionally, manually observed data includes cloud 

cover, as AWS does not monitor this parameter. The 

data period is from June 1 to August 31, 2023, every 

hour from 09:00 to 15:00 on a daily average basis. 

Rainfall data is processed by summing the amount of 

rain during that time range, chosen based on the 

optimal time for tourism activities. 

 

The initial stage of this research was collecting 

primary data in the form of respondent data at three 

tourist locations. The preliminary data aims to 

determine the perception of comfort felt by visitors 

on that day. The perception data is then grouped into 

several criteria, as in Tables 1 and 2. The next step is 

to process the data using the ordinal logistic 

regression equation. This analysis aims to identify the 

climate and non-climate variables that influence 

thermal comfort. The second stage is processing 

secondary data (climate data) to determine the 

comfort value at TMII based on the HCI method. The 

third stage is modifying the ratings and weights of the 

climate data and respondents. The technique for 

modifying the thermal comfort index is to create a 

histogram using the Sturges Rule method [30] for 

each climate parameter, namely normal effective 

temperature (NET), wind speed, cloud cover and 

rainfall. The outline of this research can be shown in 

the flowchart diagram in Figure 2. 
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Figure 2.  Flowchart research 

 

Statistics Analysis. The questionnaire data were 

inputted using a Microsoft Excel to facilitate 

subsequent calculation processes. Data processing, 

such as logistic regression, was done using Python 

programming. This research utilizes a statistical 

method, ordinal logistic regression, to analyze the 

response variable with an ordinal scale [31]. Predictor 

variables in the logistic regression model are 

categorical. The probability of thermal comfort can 

be calculated using ordinal logistic regression. The 

dependent variable (Y) represents the level of comfort 

for each individual, categorized as uncomfortable (0) 

and comfort (1). Factors influencing thermal comfort 

are categorized into: climate and non-climate factors. 

Table 1 outlines the details of non-climate variables 

as predictors (X) related to the current perceived 

weather conditions. Non-climate variables consist of 

duration, type of activity, gender, clothing worn and 

frequent visits showed in Table 2. Each category has 

a different numerical scale.  

 

Visit duration is divided into less than five and more 

than five hours. A visitor duration of less than five 

hours is synonymous with short activities such as 

jogging. The type of activity carried out during the 

trip is also recorded, whether light (leisurely walking) 

or moderate. Other things such as gender (male or 

female), color of clothes worn (dark or light) and 

frequency of visits (less than five times or more than 

five times) were also asked of respondents.  

 

The weather conditions experienced during the 

interview were also recorded according to the visitor's 

perception. Thermal and wind sensations have the 

same five levels. Thermal sensation has five levels 

ranging from very cold to hot. The wind sensation 

also has five levels: no wind to strong wind. 

Meanwhile, cloud cover has two categories: clouds 

and clear skies. Lastly, visitors are also observed and 

asked about whether there is rain or not. If visitors 

don't know that it has rained, the officers will fill in 

according to the weather in the field. 

 
Table 1.  Perception of non climate sensation 

Non climatic variable 

Duration Activity Gender Shirt 
Frequent 

visits 

 

Less than 

5 hour  

(0) 

 

light  

(0) 

 

Male  

(0) 

 

Dark  

(0) 

 

Less than 

5 times 

(0) 

 

More than 

5 hour  

(1) 

 

Medium 

(1) 

 

Female 

(1) 

 

Bright 

(1) 

 

More than 

5 times 

(1) 
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Table 2. Perception of climate sensation  
Climatic variable 

Temperature Wind 
Cloud 

Cover 

Rainfall 

event 

Very cold 

(1) 

No wind 

(1) 

Cloudy 

(0) 

No rain 

(0) 

Cold 

(2) 

Little 

wind 

(2) 

Sunny 

(1) 

Rain 

(1) 

Moderate 

(3) 

Windy 

(3) 
  

 

Warm  

(4) 

 

 

A lot of 

wind 

(4) 

  

Hot  

(5) 

 

 
 

Strong 

wind 

(5) 

  

 

The potentialities for thermal comfort can be 

computed utilizing Equation 1, which is: 

𝜋𝑗 = 𝛾𝑗 − 𝛾𝑗−1 (1) 

Further explanation includes 𝜋𝑗(𝑋) = 𝑃(𝑌 = 𝑗|𝑋) 

which represents the probability of the value 𝑌 = 𝑗 

given 𝑋 for 𝑗 = 1,2, … , 𝑞 and 𝛾𝑗(𝑋) = 𝑃(𝑌 ≤ 𝑗|𝑋) is 

the cumulative probability of the response variable 

category 𝑗 for 𝑗 = 1,2, … , 𝑞. The ordinal-scaled 

response variable 𝑌 is related to the probability vector  

𝜋 = (𝜋1(𝑋), 𝜋2(𝑋), … , 𝜋𝑞(𝑋)). The logistic 

regression model estimation can be calculated to 

determine the probability of each comfort class 

according to Equation (2): 

 

𝜋(𝑥) =  
𝑒(𝛽0+𝛽1𝑥1+𝛽2𝑥2+⋯+ 𝛽𝑝𝑥𝑝)

1+ 𝑒(𝛽0+𝛽1𝑥1+𝛽2𝑥2+⋯+ 𝛽𝑝𝑥𝑝)                     (2)  

The response variable 𝑌 is an ordinal scale variable 

with 𝛽𝑖 , 𝑖 = 0,1,2, … . 𝑛 are parameter generated from 

the calculation. The model above can be transformed 

into a linear function by formulating the response 

variable with the logit Equation (3): 

     𝑔(𝑥) = ln [
𝜋𝑓(𝑥)

𝜋𝑜(𝑥)
] = 𝛽0 + ∑ 𝛽𝑘𝑥𝑖𝑘

𝑝
𝑘=1    (3) 

 

Where, (𝑥) = 𝑙𝑛 [
𝜋𝑓(𝑥)

𝜋𝑜(𝑥)
] is logit function. In ordinal 

logistic regression, odds are defined for each category 

𝑌 ≥ 𝑗 The cumulative odds obtained from software 

assistance are cumulative from the right, so the OR 

value in the equation describes that for every increase 

in predictor variable 𝑋𝑘 by one unit, there is an 

increase or decrease in odds in the category 𝑌 ≥
𝑗 ; 𝑗 = 3,2,1 multipicatively as much as exp (𝛽𝑘). The 

definition of the Odds Ratio for the variable 𝑋𝑘 is 

expressed in Equation (4): 

 

 
 

𝑂𝑅𝑘 =

𝑃(𝑌≤𝑗|𝑋𝑘=𝑥𝑘+1)

𝑃(𝑌>𝑗|𝑋𝑘=𝑥𝑘+1)

𝑃(𝑌≤𝑗|𝑋𝑘=𝑥𝑘)

𝑃(𝑌>𝑗|𝑋𝑘=𝑥𝑘)

   (4) 

 

Table 3.  Confusion Matrix 
  Predicted label (j) Row 

  1 2 … R   

Actual 

label 

(i) 

1 𝑛11 𝑛12 … 𝑛1𝑅 𝑛1 

2 𝑛21 𝑛22 … 𝑛2𝑅 𝑛2 

. . . . . . 

. . . . . . 

. . . . . . 

 R 𝑛𝑅1 𝑛𝑅2 … 𝑛.𝑅 𝑛 

 column 𝑛.1 𝑛.2 … 𝑛.𝑅 𝑛 

 

Model Evaluation. The sample, consisting of 552 

observations, underwent data splitting into training 

and testing sets. The data was divided into a 70% 

training set (386 data) and a 30% testing set (166 

data). The data division was performed using random 

sampling to avoid bias towards different data 

probabilities. A confusion matrix [32] was employed 

to evaluate the ordinal-scaled model. The confusion 

matrix allows for the model’s conformity between 

predicted and actual value, as illustrated in Table 3. 

 

The logistic regression model's performance is 

considered good if the diagonal elements of the 

confusion matrix have consistent coefficients for the 

actual (i) and predicted (j) values. The probabilities of 

i and j can be calculated using Equations (5) and (6). 

Several components resulting from the confusion 

matrix include True Positives (TP), True Negatives 

(TN), False Positives (FP), and False Negatives (FN). 

Model evaluations such as Precision, Recall, and F1 

Score. Precision is the correct prediction in that class 

divided into predictions categorized in that class. 

Recall is the correct prediction in that class divided 

by the actual category in that class. Meanwhile F1-

score is an evaluation metric for a classification 

defined as the harmonic mean of precision and recall. 

Mathematically, it is expressed in Equations (7 - 9): 

Pi                 = ni/n  (5) 

Pj                 = 𝑛𝑗/𝑛 (6) 

      Precision  =
TP

TP+FP
  (7) 

 

       Recall        =
TP

TP+FN
 (8) 

  

       F1 Score       = 2 ∗
Presicion x Recall

Precision+Recall
 (9) 

 

Calculation of Modified Index. The initial approach 

to modifying a comfort index involves collecting 

daily climate data hourly. Data is collected from 

09:00 to 15:00, aligning with the tourist visitation 

hours and ticket counter opening times at TMII. Data 

observation extends until 15:00, marking the end of 

tourist activities at TMII. Data collection spans from 

June 1 to August 31, 2023, concurrent with the 

questionnaire data. It is worth noting that research on 

index modification, such as the Tourism Climate 

Index (TCI), has been conducted previously. The 

calculated modification transforms the original daily 

climate data period into the morning-to-afternoon 
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average. This decision is based on the observation 

that beach tourists typically do not visit in the 

afternoon [33]. The technique for modifying the 

thermal comfort index involves creating histograms 

using the Sturges rule [34] to avoid pitfalls in all data. 

This empirical method is used for determining the 

number of classes in a histogram. Each climate 

parameter, Normal Effective Temperature (TC), wind 

speed (W), cloud cover (A), and precipitation (P) is 

visualized using the histogram. The number of classes 

(k) and class intervals (i) can be expressed in 

Equations (10) and (11): 
 

 
 

 

 𝑘 = 1 + 3.322 log 𝑛  (10) 

 

 

 
 

 

 𝑖 =
𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛

𝑘
 (11) 

Description of the statistical equation involves 𝑛, the 

number of data points, where each class interval is 

represented by 𝑖. The maximum value of the data is 

denoted as 𝑋𝑚𝑎𝑥  and the minimum value is 𝑋𝑚𝑖𝑛. The 

purpose of constructing the histogram is to determine 

the data classes, frequencies, and data distribution. 

Specifically, for the NET parameter, it is calculated 

using a thermal comfort approach [35]. The 

calculation of effective temperature considers wind 

speed, air humidity, and average air temperature. 

Mathematically NET is calculated as in Equation 12: 

 

𝑁𝐸𝑇 = 37 −  
37−𝑇

0.68−0.0014𝑅𝐻+
1

1.76+1.4𝑣0.75

− 0.29𝑇 (1 − 0.01𝑅𝐻)             (12) 

 

Where, NET is Normal Effective Temperature in 

units of Celcius. 𝑇 is average daily temperature and 

𝑅𝐻 representative percentage average daily relative 

humidity. Other climate parameter for calculation 

NET is wind speed (m/s).  The results of NET 

calculations produce temperature values that are 

lower than the average air temperature. 

 

Tabel 4.  Rating for sub-index HCI 

TC (°C) 
P 

(mm) 

A 

(%) 

W 

(km/h) 
Rating 

   >70 -10 

 >25.00  - -1 

≥39 >12.00 - 50-70 0 

≤-6 - 100 - 1 

-1- -5 

37-39 

9.00-

12.00 
91-99 - 2 

0-6 - 81-90 40-49 3 

7-10 

35-36 
- 71-80 - 4 

11-14 

33-34 

6.00-

8.99 
61-70 - 5 

15-17 

31-32 
- 51-60 30-39 6 

18-19 

29-30 
- 41-50 - 7 

27-28 
3.00-

5.99 
31-40 

0 

20-29 
8 

20-22 

26 
<3.00 0 10-19 9 

23-25 0.00 
1-10 

11-20 
1-9 10 

The second stage involves determining ratings and 

weights for each thermal comfort parameter. Ratings 

are assigned to each class value. The rating and 

weight values are assigned based on the researcher's 

perspective and subjectivity. The relationship 

between ratings and weights is inseparable, forming 

the index value ranging from 0 to 100. The detailed 

ratings and weights for the HCI-urban are presented 

in Table 4. 

 

Finally, the modified index, based on class values, 

ratings, and weights, will be compared with the HCI-

urban. This aims to assess how well the modified 

index captures specific events such as rainfall. The 

evaluation of both indices is calculated using the Root 

Mean Square Error (RMSE) and correlation, as 

indicated in Equations (13) and (14): 

 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑ (𝑦𝑖 − �̂�𝑖)

2𝑛
𝑖=1  (13) 

 

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 =  
∑ (𝑥𝑖−𝑥)𝑛

𝑖=1 (𝑦𝑖−�̂�)

√∑ (𝑥𝑖−𝑥)𝑛
𝑖=1

2
√∑ (𝑦𝑖−�̂�)𝑛

𝑖=1
2
   (14) 

 

Where 𝑖 start from June 1 until 31 August 2023. 𝑦𝑖  is 

the modified index value and �̂�𝑖 is the HCI value Root 

Mean Square Error (RMSE) is used to find the 

difference between the modified index value and the 

HCI value. Meanwhile 𝑛 represents the amount of 

data from variables X and Y X is the HCI value and 

Y represents the modified index value. 

 

HCI Calculation. Thermal comfort information is 

presented through an index. The index in daily format 

is required for verification against questionnaire data. 

The index approach in this research utilizes the HCI-

urban. HCI-urban has sub-indices, with the first being 

thermal comfort (TC). TC is calculated by involving 

climate parameters such as relative humidity, 

maximum temperature, average air temperature, and 

wind speed. The result of the TC calculation is called 

the Normal Effective Temperature (NET). Other 

components include aesthetic (A), precipitation (P), 

and wind speed (W). The aesthetic component is a 

climate consisting of cloud cover observed manually 

per hour. The calculation of HCI-urban from Scott 

[23] is shown in Equation (15): 

 

𝐻𝐶𝐼𝑢𝑟𝑏𝑎𝑛 = 4𝑇𝐶 + 2𝐴 + 3𝑃 + 𝑊  (15) 

 

The weight proportions assigned to each sub-index 

are not uniform. The hierarchy of weights, arranged 

from the smallest to the largest, is W (1), A (2), P (3), 

and TC (4). TC holds the highest weight among all 

sub-indices. The weights generated by HCI are 

calculated through a survey spanning over ten years 

and visitor validation. Each HCI sub-index is 

assigned a maximum rating of 10 (optimal for 

tourists) and a minimum rating of 0 (hazardous 

conditions). HCI-urban also considers data 
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availability, such as cloud cover. Cloud cover data is 

more readily accessible from meteorological stations 

than historical sunshine duration data. This is because 

not all meteorological stations possess sunshine 

duration data. 

 

3. Result and Discussion 
 

Age Distribution. The processing of questionnaire 

results includes (i) identifying the age distribution, 

(ii) comfort based on morning and afternoon time, 

and (iii) logistic regression model. The first analysis 

involves identifying the age distribution over 92 days 

for 552 respondents. Age data is calculated using 

histogram techniques to determine the frequency and 

classes for each location shown in Figure 3. The 

calculation results indicate nine age classes with an 

interval of 7 for each class. The varying frequencies 

affect the percentage values of these classes. The 

first-class boundaries represent the minimum value of 

the data distribution, while the upper boundaries of 

the final class represent the maximum value. Based 

on age grouping, the average ages for the three 

locations are 30 years (TMII), 25 years (KRB), and 

34 years (TSI), respectively. The oldest respondents 

are recorded in TSI at 73 and 64 years in the other two 

locations. The highest age frequency falls within the 

17–22 years range in KRB, reaching 70 individuals 

(38%). Meanwhile, in TSI, 29.3% (54 individuals) 

fall within the 24–30 years age range. The age 

frequency in the 22–27 years range is higher than the 

17–22 years range in TMII, accounting for 21.7%. A 

relatively small percentage of TMII falls within the 

58–64 years age range, at 3.2% (6 individuals). The 

number of ages in the final class is one person each in 

KRB and TSI, with a percentage of 0.5% in both 

locations. The 37–43 age class in TMII has the same 

rate (9.2%) as the 48-54 years class in TSI. 

 

 
Figure 3.  Histogram of respondents’ ages 

   

 
(a) 

 
(b) 

Figure 4.  Perceptions of thermal comfort based on 

gender (a) and time (b) Comfort based 

on time 

 

Gender-based comfort analysis. Comfort based on 

gender is identified at each location. The number of 

perceptions for the three categories is presented in 

Figure 4. The number of males and females in the 

three places is not equal. Assessments of comfort 

levels also vary from one another. Overall, the 

percentage of 'comfortable' perceptions between 

males and females in TMII is 88% and 93%, 

respectively. The quantitative results indicate that 

female visitors are more comfortable, at 92% (81 

individuals), compared to males. Assessments of 

'uncomfortable' and 'very comfortable' perceptions 

are given by males at 2% (2 individuals) and 10% (8 

individuals), respectively. 

 

Thermal comfort assessments for the three categories 

emerge at KRB and TSI. KRB, with its higher 

topography compared to TMII, has different comfort 

perceptions. Sixty-five female visitors (63%) in KRB 

give the most 'very comfortable' perceptions. This 

high percentage is notably different from the 

perceptions given by males. The percentage of males, 

on the other hand, feel more 'comfortable' (47%) and 

'uncomfortable' (16%), which is relatively larger than 

females. The gender difference in the 'uncomfortable' 

level is only four individuals. In contrast to KRB, TSI 
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has a percentage of 'very comfortable' perceptions by 

females at only 60%. This percentage has a difference 

of 7% from males. The number of perceptions for 

males and females in TSI is the same, namely 58 

individuals. Other categories show that 34 females 

(35%) state 'comfortable,' followed by 

'uncomfortable' with five individuals (5%). If the 

'uncomfortable' level in TSI is compared between 

males and females, females tend to feel 

'uncomfortable' more. Based on the existing 

percentages, 'very comfortable' perceptions are more 

frequently given in TSI compared to the other two 

locations. Differences in perception results can 

provide input to tourism managers in maintaining 

environmental components. Based on the comfort 

perception, vote results show that both men and 

women feel comfortable in locations with low (cold) 

temperatures. 

 

The identification of comfort based on the division of 

morning and afternoon time is presented in Figure 2b. 

The analysis of 184 respondent data in TMII shows 

that 168 individuals feel Comfortable (91.3%) in the 

morning and afternoon. 'Uncomfortable' responses 

occur in the afternoon with two individuals (2.2%). In 

the morning, TMII visitors provide assessments 

ranging from 'comfortable' to 'very comfortable.' 

There are no assessments of discomfort during the 

morning at TMII. The 'very comfortable' category is 

also felt by eight individuals in the morning and 

afternoon. Analysis of respondents in KRB shows 

that 57 individuals feel 'comfortable' in the morning 

(62%) and in the afternoon (56.5%). 'Uncomfortable' 

responses occur in the afternoon with 2.2% (2 

individuals). The total number of respondents in the 

afternoon who feel 'very comfortable' is 38. 
 

Table 5. Partial and simultaneous test output 

Variable  Std err p 

Temperature 1.043 0.001 

Wind  0.506 0.314 

Cloud  1.016 0.101 

Rainfall event  2.673 0.000 

Duration  1.080 0.314 

Activity  -0.643 0.527 

Gender  0.879 0.351 

Shirt  -0.687 0.484 

Frequency -0.679 0.488 

Pseudo R-squ  63.2% 

 

Table 6.  Comparison of coefficient estimates and 

odds ratios 
Variable  Coef Odd ratio 

Temperature 3.476 32.33 

Wind  -0.508 0.60 

Cloud  -1.665 0.19 

Rainfall event  -11.66 0.00 

Duration  1.080 2.94 

Activity  -0.643 0.53 

Gender  0.879 2.41 

Shirt  -0.687 0.50 

Frequency -0.679 0.51 

The 'uncomfortable' category is also felt by tourists in 

both the morning and afternoon (4.4%). The 

perception of 'very comfortable' in TSI differs 

between the two locations. Fifty-nine respondents 

(64%) perceive it as 'very comfortable.' This number 

is only a difference of 3 respondents in the morning. 

The perception of 'comfortable' in the morning and 

afternoon has the same number, namely 31 

individuals. As for the 'uncomfortable' ratings in the 

morning and afternoon in TSI, there are five 

individuals and two individuals, respectively. 

Generally, perceptions of 'uncomfortable' to 'very 

comfortable' for all three tourist locations can occur 

in the morning and afternoon, except in TMII. Based 

on observations at tourist attractions, if visitors feel 

uncomfortable in the morning, they still accept and 

enjoy their vacation. However, if the discomfort 

arises during the day, visitors rush home, especially if 

it rains in the late afternoon. Some respondents state 

a level of 'uncomfortable' due to rain. The occurrence 

of rain impacts two things: a negative assessment of 

the comfort of tourism and other activity options to 

fill the lost time [36]. 

 

Logistic Regression. Initially comprising three 

categories, the response variable was simplified into 

'uncomfortable' and 'comfortable.' The dataset 

consists of 29 instances categorized as 

'uncomfortable' and 523 as 'comfortable.' For the 

training data, 19 cases were labeled 'uncomfortable,' 

and 367 were marked 'comfortable.' The testing data 

includes ten instances of 'uncomfortable' and 156 for 

'comfortable.' Data splitting was performed 

randomly. The results of the partial and overall tests 

are presented in Table 5. The logistic regression 

model can explain 63.2% of the variation in the data. 

Positive coefficients are observed for the predictors 

of temperature, duration, and gender. However, none 

of the five non-climatic factors show significance 

with a p-value < 0.05, indicating that all non-climatic 

parameters do not influence thermal comfort.  
 

On the contrary, significant p-values < 0.05 are found 

only for the predictors of climatic parameters—

precisely, temperature and rainfall, with values of 

0.001 and 0.000. Interpreting the model can be 

conducted after the completion of odd ratio 

calculations. The estimated coefficient values and 

odd ratios are presented in Table 6. 

 

The model comparisons for each class are 

multiplicative, with the baseline model being class 1. 

The temperature variable in the odd ratio class 0 

indicates that with a one-point increase in 

temperature, the likelihood of a shift tends to increase 

by 32.3 from the 'uncomfortable' to the 'comfortable' 

category. In other words, warmer temperatures are 

inclined towards the 'comfortable' category. Visitors 

generally feel comfortable at a thermal temperature 

(TC) of 22.7°C - 28.0°C with wind speed conditions 
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of 2.47 km/h - 8.02 km/h. Additionally, visitors will 

feel uncomfortable at tourist locations if it rains, 

whether light rain or moderate rain. This results in 

reduced vacation time.  

 

Rain events have an odds ratio value of 0.01, which 

means that if it rains, visitors are 99.9% likely to feel 

discomfort. Factors forming thermal comfort based 

on the variables above, such as rain events, can be 

analyzed further. The amount of rain has a different 

intensity from one location to another. Rain events 

occurred from June 1 to August 31, 2023, at TMII, 

KRB and TSI, respectively, eight times, 19 times and 

eight times. Descriptively, the highest rainfall 

recorded in KRB was 78.8 mm on June 19. Compared 

with the other two locations, TMII is 35.5 mm, and 

TSI is only 11.5 mm. This rain event directly 

impacted the response of visitors who came. 

 

Weather conditions significantly affect emotions and 

perceptions, such as the onset of rain, which can 

trigger emotions and frustration due to shortened 

vacation time, leading visitors to experience 

discomfort during their trips [36]. The temperature 

sensation variables, cloud cover and wind speed do 

not directly affect thermal comfort in the three 

locations. This result contrasts previous research 

stating that temperature and solar radiation mutually 

influence comfort [37]. Sufficient vegetation cover in 

an area can give a comfortable impression. Outdoor 

tourism in tropical areas requires canopy coverage, 

such as trees reaching pedestrian areas, to prevent 

direct exposure to solar radiation [38]. 

 

 

Figure 5.  Confusion matrix 

 

Table 7.  Classification report 

 Precision Recall 
F1-

score 
Support 

1 1.00 0.20 0.33 10 

2 0.95 1.00 0.97 156 

     

Accuracy   0.95 166 

 

Model Evaluation. The model's performance is 

depicted in a confusion matrix for the classification 

of each class. The matrix contains values illustrating 

the model's performance, aiming to measure the 

algorithm's performance across two or more 

categories. Testing data is classified into the model 

matrix. Rows in the matrix represent the predicted 

values for each class, while columns represent the 

actual values of the data. Label 0 denotes the category 

'not comfortable,' whereas the category 'comfortable' 

is labelled as 1. Based on the testing data of 166 

records, the model correctly predicted the 

'comfortable' category at a rate of 93.9% (156 

records), while only two were correctly predicted in 

the 'not comfortable' category. The results of the 

confusion matrix are presented in Figure 2. The 

performance metrics, including accuracy, recall, and 

F1-Score, are shown in Table 7. The model exhibits 

an accuracy of 95%, indicating excellent data 

classification. Furthermore, the precision of the 

model in predicting positive classes for 

'uncomfortable' and 'comfortable' is 100% and 95%, 

respectively. Meanwhile, the recall values are 20% 

for the 'uncomfortable' class and 100% for the 

'comfortable' class. The model balance (F1-Score) for 

the 'uncomfortable' and 'comfortable' classes is 33% 

and 97%, respectively. 

 

Modification of Thermal Comfort Index. The 

initial stage in modifying the climate comfort index is 

time series analysis. The aim is to find out the 

distribution of data and statistical values. Time series 

analysis was carried out from 2008 to 2022 from daily 

data at the TMII location. The data format analyzed 

is in the form of daily averages for air temperature, 

effective temperature, air humidity and wind speed. 

Meanwhile, rainfall is calculated from the daily total. 

In general, the climatic parameter profile in TMII 

exhibits fluctuations over time, as depicted in Figure 

6. The maximum value of the average temperature 

over 15 years is 31°C, with the recorded minimum 

being 23.5°C. Fluctuations in the average air 

temperature values are followed simultaneously by 

effective temperature. In the context of effective 

temperature calculations, the results will be lower 

than the average air temperature. 

 

The average wind speed in TMII is 2.7 km/h, with the 

maximum wind speed occurring more frequently in 

November 2008, January 2009, November 2009, 

January 2010, and January 2011, reaching a value of 

16.67 km/h. Rainfall is not analyzed in the context of 

extreme analysis but only presents class intervals of 

low rainfall over 15 years. The maximum daily 

rainfall in TMII (East Jakarta) occurred on January 1, 

2020, amounting to 377.2 mm. The peak of the rainy 

season in TMII occurs during the December-January-

February (DJF) period. Another analyzed parameter 

is air humidity. The fluctuation of daily average air 

humidity values is quite diverse. Furthermore, the air 
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humidity in TMII is 78.5%. Air humidity is also 

considered in calculating the effective temperature, so 

data availability in creating the thermal comfort index 

must be complete. 

 

Histogram analysis of TMII is conducted to 

determine the statistical distribution of data. The 

format and data parameters in the histogram analysis 

are the same as for time series data. Statistically, 

histograms facilitate the creation of classes for each 

climatic comfort parameter. Each class has an interval 

value based on calculating the maximum and 

minimum values. Histograms for each parameter are 

displayed in Figure 7. There are two types of data 

distribution: normal and gamma. NET, wind speed, 

and air humidity parameters follow a normal 

distribution, while rainfall falls into the gamma 

distribution category.      

 

Wind speed in TMII, with a frequency of 17.9%, 

occurs at speeds ranging from 0 to 4 km/h, with an 

event frequency of 1967 occurrences. Indicates that 

low wind speeds are typical in TMII. The Effective 

Temperature (NET) in TMII ranges from 24.5°C to 

25°C (1022 occurrences). Air humidity also follows a 

normal distribution, similar to wind speed and NET 

parameters. The proportion of air humidity in the 

75%-80% class in TMII is 24.7%, with a class 

interval of 6. This implies that moisture is still 

relatively high. One of the gamma distributions is 

rainfall. The frequency of low rainfall events 

dominates the TMII region. 73.8% of rainfall is 

mainly dominated by 0 mm -10 mm, with a frequency 

of 4045 occurrences. Meanwhile, 83.8% of the 

frequency of rainfall events is 0 – 20 mm, 4594 times. 

 

 
Figure 7. Histogram of thermal comfort 

parameter

 

 
Figure 6. Profile of daily climatic parameters from 2008 to 2022 
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Table 8.  Rating for each sub-index derived from 

the modified thermal comfort index 

TC 

(°C) 

P 

(mm) 

A 

(%) 

W 

(km/h) 
Rate 

19-20.9 0-0.49 95-100 0-0.99 10 

21-22.9 0.5-0.99 86-94.9 1-1.99 9 

23-24.9 1-1.49 77-85.9 2-2.99 8 

25-26.9 1.5-1.99 68-76.9 3-3.99 7 

27-28.9 2.0-2.49 59-67.9 4-4.99 6 

29-30.9 2.5-2.99 50-58.9 5-5.99 5 

≥31 3.0-3.49 41-49.9 ≥6.00 4 

- 3.5-3.99 32-40.9 - 3 

- 4.0-4.49 23-31.9 - 2 

- 4.5-4.99 14-22.9 - 1 

- ≥5 <14 - 0 

 

The results of the rainfall histogram show that low 

rainfall can be the basis for creating thermal comfort 

classes. The limit for the total amount of rainfall to 

be considered is, at most, 10 mm. The thermal 

comfort parameters for thermal comfort 

modification are effective temperature, cloud cover, 

wind speed, and rainfall. The results of the histogram 

calculation by combining data are presented in Table 

8. One of the thermal comfort components is the 

effective temperature. The class intervals and ratings 

for each parameter are not the same. Mathematically, 

the effective temperature is lower than the average 

air temperature. There are seven classes for the 

effective temperature parameter with a class interval 

of 1.9 °C. The lowest rating for the effective 

temperature is at temperatures greater than or equal 

to 31°C, which is 4. The rating value for the effective 

temperature increases by 0.1 with the addition of 

classes up to 31°C. The class with the highest rating 

is in the temperature range of 19-20.9°C, which is 

10. 

 

Other parameters, such as rainfall, are restricted to 

values above 5.00 mm. Rainfall and cloud cover 

components are structured into 11 classes. A 

maximum rating of 10 is assigned to total rainfall up 

to 5 mm. This rating of 10 is based on the assumption 

that higher rainfall would decrease the comfort level 

for visitors. The sub-index of cloud cover has 

intervals in each class, specifically 9.9%. The 

minimum rating is assigned to cloud cover less than 

two octas (<14%). The comfort condition is present 

in cloud cover of 4 to 8 octas. Cloud cover provides 

a sensation of warmth that is not directly felt by the 

skin due to the presence of a barrier. The sub-index 

for wind speed has the same classes as the effective 

temperature, namely seven classes. Low wind speed 

profiles are given a maximum rating of 10. 

 

In essence, assigning weights will result in the 

maximum value of an index. The maximum rating 

for a sub-index indicates the multiplier value against 

the weight. Simply put, the higher the rating value, 

the closer it will yield the optimum value of 100 for 

the index. The modified weights differ from the 

HCI-urban. The TC and P components have the 

same weight, namely 4. Meanwhile, the weights for 

A and W are one each. The results of modifying the 

thermal comfort index are presented in Equation 16 

as follows: 

 

       Modified index = 4𝑇𝐶 + 𝐴 + 4𝑃 + 𝑊  (16) 

 

Changes in weight in index modification refer to the 

HCI: urban equation (Equation 14). Weight 

adjustments are made to produce comfort value 

limits according to visitor perceptions. The TC and 

W sub-indices have no change in weight. Weight 

changes were made to the cloud cover (A) and 

rainfall (P) sub-indices. The cloud cover sub-index 

has been changed from two to one. Meanwhile, the 

weight for the rainfall sub-index was increased to 

four. The basis for increasing weight on rainfall is 

that rainfall affects aspects of thermal comfort. 

Changes in the weight of the cloud cover and rainfall 

sub-indices are limited from values one to four 

manually.  

 
Figure 8. Daily modified comfort index period 1 June – 31 August 2023 
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Table 9.  Comfort class categories based on 

values from the modified thermal 

comfort index  

Category Value 

Very comfortable 86.00 – 100 

Comfortable 71.00 – 85.99 

Quite comfortable 61.00 – 70.99   

Uncomfortable 36.00 – 60.99  

Very uncomfortable 0.00 – 35.99  

 

The modified comfort index values resulting from the 

rating and weight are displayed in Figure 8. The time 

series graph shows index values on average for daily 

periods (09:00 – 15:00). The modified index results 

exhibit varying values over time. During the period 

from June 1 to August 31, values range from 

minimum to maximum. Values below 50 occurred on 

June 14, June 16, and June 19. The index values for 

these times are 39, 48, and 42, respectively. The 

analysis indicates that index values are influenced by 

rainfall exceeding 5 mm. The HCI-urban index value 

on June 16 is lower than the modified index. This is 

due to daily rainfall 35.8 mm, resulting in an HCI-

urban values 41. Rainfall on that date was 16 mm, 

35.8 mm, and 17 mm. Rainfall events directly affect 

tourists' comfort perceptions. This impacts the 

assessment of the P rating by 0. Higher total rainfall 

on that day will reduce the comfort index value. 

Meanwhile, the effective temperature, wind, and 

cloud cover values on that date were quite good, 

indicating no extreme events.  

 

The modified index categories were divided into five, 

from very uncomfortable to very comfortable are 

presented in Table 9. The simplification of the 

comfort category aims to simplify the upper and 

lower limit values for each class. The limit for the 

'comfortable' category in the modification index is 61 

– 70.99. Compared with HCI: urban, the comfortable 

value limit is 40 [23]. The difference in comfort value 

limits is caused by several factors, one of which is 

visitor sensitivity to rain events. Based on the analysis 

of 552 respondents, it was found that rain with light 

or moderate intensity would give an uncomfortable 

rating. The difference between ratings and weights in 

HCI: Urban has not fully represented the thermal 

conditions in tropical regions. Light rain events 

(<3.00 mm) give a rating of 9. Meanwhile, the 

modified index is rated 5 for rainfall <3.00.    

 

Analysis of other components such as cloud cover has 

ratings of 7, 10, and 9 for the respective dates. High 

ratings are also observed for other comfort 

components like TC and W. The index values above 

70 are observed from June 22 to August 31. During 

this period, it tends more towards the 'comfortable' 

category. The optimum value occurred on July 6, 

2023, at 86. There was no rain on that date, and the 

effective temperature was 26.8 °C. Other data, such 

as wind speed, was only at a 1.28 km/h value, which 

falls into the calm wind category. Furthermore, 

statistical analysis results show that the correlation 

between the modified index and HCI-urban is 86%, 

with a standard deviation of 6.6. 

 

The next step is to verify the results of the modified 

index against the visitors' responses during the 

daytime. The number of respondents during the day 

is 92 people. Choosing respondents during the day 

represents the perception of comfort on that day. A 

comparison of the categories from the modified 

index, HCI, and respondents' perceptions is shown in 

Figure 6. The comfort class categories of HCI, which 

number 8, are simplified into three classes: 'very 

comfortable,' 'comfortable,' and 'uncomfortable.' 

Based on the perceptions collected at TMII, it is 

evident that no visitors feel 'very comfortable.' 

Respondents choosing the 'comfortable' condition are 

87 people. This number is only different by one from 

the modified index. Looking at the 'uncomfortable' 

class, five respondents and three are from the 

modified index. Meanwhile, for HCI, no values fall 

into the 'very uncomfortable' category for the three 

months. However, more assessments are in the 

'comfortable' class, with a small portion in the 'very 

comfortable' class.  

 

The difference between HCI results and respondent 

perceptions is attributed to HCI’s ‘uncomfortable’ 

category threshold. Discomfort assessed by HCI falls 

within the range of -9 to 39. This range is too narrow, 

making discomfort responses dependent on extreme 

climate data. The rating for the rainfall sub-index (P) 

in HCI evaluates rainfall between 6 mm and 8.99 mm 

with a high rating. Meanwhile, respondents' 

perceptions in tropical regions consider rain 

discomforting tourism. In the context of the rainfall 

sub-index (P) rating, the modified index aligns the 

daily rainfall rating with the modified TCI index 

results. Although the TCI modification is applied 

monthly, this range can serve as a basis for daily 

ratings [23]. Analysis of another sub-index, namely 

effective temperature, also yields different ratings 

compared to HCI-urban. HCI-urban rates 

temperatures in the range of 23°C – 25°C as 10 (very 

comfortable). Meanwhile, the modification places 

temperatures in the 23°C–24.9°C with a rating of 8, 

categorizing it as 'comfortable' [38]. Furthermore, the 

wind speed (W) and cloud cover (A) sub-indexes 

differ from HCI-urban. The wind speed values and 

ratings given in HCI align with the Climate Index for 

Tourism (CIT) based on respondent perceptions, 

considering the ideal conditions to be 1-9 km/h [39]. 

 

The difference in cloud cover rating assessments 

between the modified index and HCI-urban is visitor 

perceptions. HCI-urban, HCI-beach, and the 

optimization index provide assessments opposite to 

the modified index in tropical regions [33]. These 

three indices believe that more cloud cover will 
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reduce the rating. It is important to emphasize that the 

location of the tourist destination will influence 

visitor perceptions for each sub-index. It is 

unavoidable that tourists in urban areas tend to prefer 

green areas dominated by nature tourism.  

 

The performance evaluation of HCI and TCI scores 

in coastal areas was correlated with the average 

number of monthly visitors [33]. The results show a 

high correlation with the modified index. However, 

this method cannot be applied to this research because 

magnetism or the desire to travel only sometimes 

considers weather and climate conditions except 

during the rainy season. The three locations studied 

were three months into the dry season in 2023. In 

addition, there is a school holiday calendar, which 

causes peak holidays in that period to be high.  

 

Modifications to the comfort index only approach 

visitor perceptions by adjusting the rating values and 

weights from HCI: urban. The HCI: urban sub-index 

is considered to have a threshold different from 

tropical areas. Qualitatively, the performance of the 

modified index with HCI: urban has differences in 

determining the uncomfortable and very comfortable 

categories. However, both indices performed well in 

determining the comfort category and were validated 

during the dry season (JJA); therefore, because there 

are still visitors who feel uncomfortable while on 

holiday during the dry season, they can make 

suggestions to tourism managers to sustain 

environmental comfort. 

 

4. Conclusion 
 

In broad strokes, this research contributes two 

essential aspects related to the perspective of the 

climate index in the tourism sector situated in tropical 

regions: 

1. Climate factors influencing thermal comfort in 

urban tourism are temperature and rainfall. There 

is no correlation with gender, activities, duration, 

frequency, and clothing type in the context of 

comfort tourism. 

2. A novel empirical methodology approach 

focuses on a modified climate index designed 

explicitly for humid tropical urban tourist. 

Modified index scores for each category are 

adjusted to better align with visitor votes.  

 

The modified index approach is grounded in visitor 

perceptions at tourism locations. The modified index 

represents optimal values up to 100, similar to HCI-

urban. In numerical calculations, the modified index 

comprises four sub-indexes calculated from the 

average climate data between 09:00 and 15:00. The 

modification technique, altering ratings and weights, 

effectively captures rainfall events from June to 

August. Furthermore, the index values for each 

category are adjusted to better align with visitor 

perceptions. A score of 60 on the HCI is in the 

comfortable category, but this value does not 

necessarily indicate comfort. However, when 

validated against respondent data, it is perceived as 

'uncomfortable.' The occurrence of low to moderate-

intensity rain has an impact on respondents' comfort. 

Adjusting category value ranges effectively evaluates 

the 'uncomfortable' and 'comfortable' categories. This 

study contributes value to thermal comfort 

assessment in tropical regions and preferences for 

using HCI-urban to assess thermal comfort 

perceptions. 

 

Suggestion 
 

Objectively, this research necessitates further 

development in terms of data validation. The data 

validation period should be extended by one year 

because it is crucial to continuously assess the index’s 

performance during dry and rainy seasons. Further 

research will evaluate HCI-urban in the rainy season 

and compare perception tourism. The next step will 

be analyzed using historical climatological data to 

modify the thermal comfort index comprehensively. 

 

Acknowledgement 
 

Gratitude is extended to the management of TMII, 

KRB, and TSI for providing special access in 

distributing questionnaires. Additionally, 

appreciation is conveyed to BMKG for supplying 

real-time climate data through the AWS device. Not 

to be forgotten, acknowledgment is given to the 

research supervisor who has assisted in imparting 

new insights into the perspective of thermal comfort 

in tropical regions.  

 

References 
 

[1] H. Aribowo, A. Wirapraja, and Y. D. Putra, 

“Implementasi kolaborasi model pentahelix 

dalam rangka mengembangkan potensi 

pariwisata di jawa timur serta meningkatkan 

perekonomian domestik,” Jurnal Mebis 

(Manajemen dan Bisnis), vol. 3, no. 1, Jul. 

2018, doi: 10.33005/mebis.v3i1.21. 

[2] N. Drakulić Kovačević, L. Kovačević, U. 

Stankov, V. Dragićević, and A. Miletić, 

“Applying destination competitiveness 

model to strategic tourism development of 

small destinations: The case of South Banat 

district,” Journal of Destination Marketing 

and Management, vol. 8, pp. 114–124, Jun. 

2018, doi: 10.1016/j.jdmm.2017.01.002. 

[3] A. Maulana, “Kajian perhitungan global 

gross travel propensity (gtp) dan country 

potential generation index (cpgi) 2016,” 

2019. 

 



JURNAL METEOROLOGI DAN GEOFISIKA VOL. 25 ED. 1 2024: 1 - 15 
14 

[4] J. A. Salinas Fernández, P. Serdeira Azevedo, 

J. M. Martín Martín, and J. A. Rodríguez 

Martín, “Determinants of tourism destination 

competitiveness in the countries most visited 

by international tourists: Proposal of a 

synthetic index,” Tour Manag Perspect, vol. 

33, Jan. 2020, doi: 

10.1016/j.tmp.2019.100582. 

[5] L. Li, X. Zhou, and L. Yang, “The Analysis 

of Outdoor Thermal Comfort in Guangzhou 

during Summer,” in Procedia Engineering, 

Elsevier Ltd, 2017, pp. 1996–2002. doi: 

10.1016/j.proeng.2017.10.070. 

[6] F. F. Wu, X. H. Yang, Z. Y. Shen, and Z. J. 

Yi, “Long-term trends and spatiotemporal 

variations of climate comfort in China during 

1966-2016,” Thermal Science, vol. 24, no. 4, 

pp. 2445–2453, 2020, doi: 

10.2298/TSCI2004445W. 

[7] I. Zeren Cetin and H. Sevik, “Investigation of 

the relationship between bioclimatic comfort 

and land use by using GIS and RS techniques 

in Trabzon,” Environ Monit Assess, vol. 192, 

no. 2, Feb. 2020, doi: 10.1007/s10661-019-

8029-4. 

[8] M. Rutty, D. Scott, P. Johnson, M. Pons, R. 

Steiger, and M. Vilella, “Using ski industry 

response to climatic variability to assess 

climate change risk: An analogue study in 

Eastern Canada,” Tour Manag, vol. 58, pp. 

196–204, Feb. 2017, doi: 

10.1016/j.tourman.2016.10.020. 

[9] T. Bausch, W. C. Gartner, and A. Humpe, 

“How weather conditions affect guest arrivals 

and duration of stay: An alpine destination 

case,” International Journal of Tourism 

Research, vol. 23, no. 6, pp. 1006–1026, Nov. 

2021, doi: 10.1002/jtr.2459. 

[10] C. K. C. Lam, J. Hang, D. Zhang, Q. Wang, 

M. Ren, and C. Huang, “Effects of short-term 

physiological and psychological adaptation 

on summer thermal comfort of outdoor 

exercising people in China,” Build Environ, 

vol. 198, Jul. 2021, doi: 

10.1016/j.buildenv.2021.107877. 

[11] R. and A.-C. E. American Society of Heating, 

Thermal Environmental Conditions for 

Human Occupancy. Atlanta: ASHRAE 

Standard Committee, 2004. [Online]. 

Available: www.ashrae.org 

[12] H. Wang, Q. You, G. Liu, and F. Wu, 

“Climatology and trend of tourism climate 

index over China during 1979–2020,” Atmos 

Res, vol. 277, p. 106321, 2022, doi: 

https://doi.org/10.1016/j.atmosres.2022.1063

21. 

[13] J. Susanto, X. Zheng, Y. Liu, and C. Wang, 

“The impacts of climate variables and 

climate-related extreme events on island 

country’s tourism: Evidence from 

Indonesia,” J Clean Prod, vol. 276, Dec. 

2020, doi: 10.1016/j.jclepro.2020.124204. 

[14] H. Andrade, M. J. Alcoforado, and S. 

Oliveira, “Perception of temperature and 

wind by users of public outdoor spaces: 

Relationships with weather parameters and 

personal characteristics,” Int J Biometeorol, 

vol. 55, no. 5, pp. 665–680, Sep. 2011, doi: 

10.1007/s00484-010-0379-0. 

[15] J. Li, R. Sun, and L. Chen, “A review of 

thermal perception and adaptation strategies 

across global climate zones,” Urban Clim, 

vol. 49, p. 101559, 2023, doi: 

https://doi.org/10.1016/j.uclim.2023.101559. 

[16] C. K. C. Lam, S. Shooshtarian, and I. 

Kenawy, “Assessment of urban physical 

features on summer thermal perceptions 

using the local climate zone classification,” 

Build Environ, vol. 236, May 2023, doi: 

10.1016/j.buildenv.2023.110265. 

[17] A. N. Kakon, M. Nobuo, S. Kojima, and T. 

Yoko, “Assessment of Thermal Comfort in 

Respect to Building Height in a High-Density 

City in the Tropics,” American J. of 

Engineering and Applied Sciences, vol. 3, no. 

3, pp. 545–551, 2010. 

[18] N. Mölders, “Outdoor Universal Thermal 

Comfort Index Climatology for Alaska,” 

Atmospheric and Climate Sciences, vol. 09, 

no. 04, pp. 558–582, 2019, doi: 

10.4236/acs.2019.94036. 

[19] K. Błazejczyk et al., “An introduction to the 

Universal thermal climate index (UTCI),” 

Geogr Pol, vol. 86, no. 1, pp. 5–10, 2013, doi: 

10.7163/GPol.2013.1. 

[20] B. Paramita, H. E. Kusuma, and A. 

Matzarakis, “Urban performance based on 

biometeorology index in high-density, hot, 

and humid cities,” Sustain Cities Soc, vol. 80, 

May 2022, doi: 10.1016/j.scs.2022.103767. 

[21] D. Fröhlich and A. Matzarakis, “Spatial 

estimation of thermal indices in urban areas-

basics of the skyhelios model,” Atmosphere 

(Basel), vol. 9, no. 6, May 2018, doi: 

10.3390/atmos9060209. 

[22] Z. T. Mieczkowski, “The tourism climatic 

index: a method of evaluating world climates 

for tourism,” Canadian Geographer, vol. 29, 

pp. 220–233, 1985. 

[23] D. Scott, M. Rutty, B. Amelung, and M. 

Tang, “An inter-comparison of the Holiday 

Climate Index (HCI) and the Tourism 

Climate Index (TCI) in Europe,” Atmosphere 

(Basel), vol. 7, no. 6, Jun. 2016, doi: 

10.3390/atmos7060080. 

[24] N. A. I. Hasanah, D. Maryetnowati, F. N. 

Edelweis, F. Indriyani, and Q. Nugrahayu, 

“The climate comfort assessment for tourism 

purposes in Borobudur Temple Indonesia,” 



MODIFICATION OF THE THERMAL COMFORT…………….….……………………………………………....Nizar Manarul Hidayat, et al. 
15 

Heliyon, vol. 6, no. 12, Dec. 2020, doi: 

10.1016/j.heliyon.2020.e05828. 

[25] N. M. Hidayat, “Analysis and determination 

of tourism climate index (tci) in east nusa 

tenggara,” Jurnal Meteorologi dan Geofisika, 

vol. 3, pp. 57–63, Jun. 2022, doi: 

https://doi.org/10.31172/jmg.v23i3.821. 

[26] L. Velea, A. Gallo, R. Bojariu, A. Irimescu, 

V. Craciunescu, and S. Puiu, “Holiday 

Climate Index: Urban—Application for 

Urban and Rural Areas in Romania,” 

Atmosphere (Basel), vol. 13, no. 9, Sep. 2022, 

doi: 10.3390/atmos13091519. 

[27] D. D. Yu, L. Matthews, D. Scott, S. Li, and 

Z. Y. Guo, “Climate suitability for tourism in 

China in an era of climate change: a 

multiscale analysis using holiday climate 

index,” Current Issues in Tourism, vol. 25, 

no. 14, pp. 2269–2284, 2022, doi: 

10.1080/13683500.2021.1956442. 

[28] J. T. Samarasinghe et al., “Performances of 

Holiday Climate Index (HCI) for Urban and 

Beach Destinations in Sri Lanka under 

Changing Climate,” Climate, vol. 11, no. 3, 

Mar. 2023, doi: 10.3390/cli11030048. 

[29] C. R. De Freitas, D. Scott, and G. McBoyle, 

“A second generation climate index for 

tourism (CIT): Specification and 

verification,” Int J Biometeorol, vol. 52, no. 

5, pp. 399–407, May 2008, doi: 

10.1007/s00484-007-0134-3. 

[30] G. Dubois, J. P. Ceron, C. Dubois, M. D. 

Frias, and S. Herrera, “Reliability and 

usability of tourism climate indices,” Earth 

Perspectives, vol. 3, no. 1, Dec. 2016, doi: 

10.1186/s40322-016-0034-y. 

[31] D. W. Hosmer and S. Lemeshow, Applied 

Logistic Regression, 2nd ed. New York: John 

Willey and Sons, 2000. 

 

[32] J. S. Cardoso and R. Sousa, “Measuring the 

performance of ordinal classification,” Intern 

J Pattern Recognit Artif Intell, vol. 25, no. 8, 

pp. 1173–1195, Dec. 2011, doi: 

10.1142/S0218001411009093. 

[33] L. Matthews, D. Scott, and J. Andrey, 

“Development of a data-driven weather index 

for beach parks tourism,” Int J Biometeorol, 

vol. 65, no. 5, pp. 749–762, May 2021, doi: 

10.1007/s00484-019-01799-7. 

[34] H. A. Sturges, “The Choice of a Class 

Interval,” J Am Stat Assoc, vol. 21, pp. 65–

66, 1926, [Online]. Available: 

https://api.semanticscholar.org/CorpusID:12

2626010 

[35] K. Blazejczyk, Y. Epstein, G. Jendritzky, H. 

Staiger, and B. Tinz, “Comparison of UTCI 

to selected thermal indices,” Int J 

Biometeorol, vol. 56, no. 3, pp. 515–535, 

2012, doi: 10.1007/s00484-011-0453-2. 

[36] S. Gössling, B. Abegg, and R. Steiger, “‘It 

was raining all the time!’: Ex post tourist 

weather perceptions,” Atmosphere (Basel), 

vol. 7, no. 1, 2016, doi: 

10.3390/atmos7010010. 

[37] M. Nikolopoulou and S. Lykoudis, “Thermal 

comfort in outdoor urban spaces: Analysis 

across different European countries,” Build 

Environ, vol. 41, no. 11, pp. 1455–1470, Nov. 

2006, doi: 10.1016/j.buildenv.2005.05.031. 

[38] W. Yang, N. H. Wong, and S. K. Jusuf, 

“Thermal comfort in outdoor urban spaces in 

Singapore,” Build Environ, vol. 59, pp. 426–

435, Jan. 2013, doi: 

10.1016/j.buildenv.2012.09.008. 

[39] C. R. De Freitas, D. Scott, and G. McBoyle, 

“A second generation climate index for 

tourism (CIT): Specification and 

verification,” Int J Biometeorol, vol. 52, no. 

5, pp. 399–407, May 2008, doi: 

10.1007/s00484-007-0134-3. 

  

  

 

 

 

 

 

 

 

 


