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ABSTRACT 

 

In this study, we developed and evaluated daily rainfall prediction models using deep learning architectures, 

specifically comparing Long Short-Term Memory (LSTM) and Transformer models with various atmospheric 

predictors. The results showed that the LSTM yielded higher accuracy at short-term lags, with R² reaching 0.94 

and RMSE as low as 4.81 at lag-3, while the Transformer demonstrated more consistent performance across all 

lags, maintaining stable R² values around 0.87–0.88. Applying a 5-day smoothing pre-processing step significantly 

enhanced prediction quality for both models by reducing high-frequency noise in the raw data, particularly 

benefiting the LSTM, which was more sensitive to such fluctuations. Adding tropical wave variables did not 

substantially improve the performance of the model and could reduce LSTM accuracy at longer lags due to 

increased input complexity. In contrast, the Transformer remained relatively robust to these variations. Among all 

predictors, the vertically integrated moisture flux divergence (VIMD) stood as the most important predictor, 

emphasizing its physical relevance to precipitation processes in convective and monsoonal regions. These findings 

highlighted that while the LSTM excelled at capturing short-term temporal dynamics, the Transformer offered a 

stable framework for longer-range rainfall forecasting. 
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1. Introduction 

Indonesia’s climate shaped by the lush embrace of 

tropical rainforests, presents a fascinating 

combination of year-round stable temperatures and 

consistently high rainfall influenced by vast 

atmospheric systems such as monsoons, Hadley and 

Walker circulations, and global phenomena like the 

El Niño–Southern Oscillation. However, across its 

many islands, each region’s weather exhibits a 

distinctive pattern molded by unique geography and 

local atmospheric dynamics, resulting in remarkable 

variations in rainfall intensity, frequency, and 

duration. 

As Indonesia’s economic hub, Jakarta is particularly 

vulnerable to extreme weather events, especially 

heavy rainfall that often triggers flooding. This 

vulnerability is driven by complex interactions 

among atmospheric factors such as humidity, sea 

surface temperature, surface pressure, and vertical 

and horizontal motions in the lower to mid-

troposphere [1], [2]. The city’s susceptibility is 

further heightened by its flat topography, dense 

urbanization, and coastal proximity [3]. Additionally, 

tropical waves-including the Madden-Julian 

Oscillation, Mixed Rossby-Gravity waves, Kelvin 

waves, Equatorial Rossby waves, and Tropical 

Depressions significantly influence convection 

dynamics and rainfall distribution [4], [5], [6], [7]. 

Such influences have also been demonstrated in 

previous studies, where convectively coupled 

equatorial waves were shown to modulate rainfall 

extremes in Java and surrounding regions, 

underscoring their relevance to rainfall variability in 

the Indonesian maritime continent [8]. 

Rainfall prediction remains a major challenge in 

meteorology due to its discrete nature and high 

variability across space and time, with rainfall 

intensities changing within minutes and distributions 

driven by both local and global atmospheric 

dynamics. Numerical Weather Prediction (NWP) 

models have advanced in assimilating observational 
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and physical parameters from global to regional 

scales to produce more systematic forecasts; 

however, they still face limitations in representing 

small-scale factors that influence localized extreme 

events and maintaining accuracy over very short or 

extended timeframes [9], [10]. These limitations 

highlight the need for complementary data-driven 

approaches capable of capturing nonlinear and multi-

scale variability in daily rainfall. In recent years, 

machine learning methods such as Long Short-Term 

Memory (LSTM) networks have garnered attention 

for their ability to capture both short- and long-term 

temporal dependencies and to address the vanishing 

gradient problem [11], [12], [13], [14]. Attention-

based models, like the Transformer, utilize self-

attention to process entire inputs in parallel, 

efficiently capturing long-range dependencies while 

accelerating training, thus showing strong potential 

for complex daily rainfall forecasting influenced by 

dynamic atmospheric factors [15]. This study aims to 

address these challenges by developing and 

evaluating reliable daily rainfall prediction models 

that leverage deep learning architectures based on 

sequential models (LSTM) and attention mechanisms 

(Transformer), using atmospheric variables as 

predictors. 

2. Methods 

LSTM model. Long Short-Term Memory (LSTM) is 

a neural network architecture designed to capture 

temporal dependencies in sequential data. Its main 

strength lies in preserving long-term patterns that are 

often lost in conventional models, making it well-

suited for tasks such as rainfall prediction[16], [17].   

 

Figure 1 LSTM network architecture 

LSTM employs a gated mechanism-consisting of 

input, forget, and output gates-to regulate the storage, 

updating, and removal of information in its memory 

cells. Within each cell, sigmoid layers guide the 

gating process, while a tanh activation function 

updates the cell state. According to [18], the forget 

gate determines which information from the previous 

state should be discarded, mathematically expressed 

in the following equation. The forget gate determines 

which information from the previous cell state should 

be discarded, as expressed in Eq. (1) 

𝑓𝑡 = 𝜎(𝑊𝑓 ⋅ [ℎ𝑡 − 1, 𝑥𝑡] + 𝑏𝑓) (1) 

The input gate controls the fraction of new 

information allowed into the memory, formulated in 

Eq. (2) 

𝑖𝑡 = 𝜎(𝑊𝑖 ⋅ [ℎ𝑡 − 1, 𝑥𝑡] + 𝑏𝑖) (2) 

A candidate cell state is generated to represent 

possible new content, defined in Eq. (3) 

𝐶̃𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐 ⋅ [ℎ𝑡 − 1, 𝑥𝑡] + 𝑏𝐶) (3) 

The cell state is then updated by merging past 

memory with the candidate state, as illustrated in Eq. 

(4) 

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶̃𝑡 (4) 

The output gate determines which portion of the 

updated cell state contributes to the hidden state, as 

given in Eq. (5) 

𝑜𝑡 = 𝜎(𝑊𝑜 ⋅ [ℎ𝑡 − 1, 𝑥𝑡] + 𝑏𝑜) (5) 

Finally, the hidden state is updated based on the 

output gate and the current cell state, as described in 

Eq. (6) 

ℎ𝑡 = 𝑜𝑡 ∗ 𝑡𝑎𝑛ℎ(𝐶𝑡) (6) 

Transformer model. The Transformer is a deep 

learning architecture designed to overcome the 

limitations of sequential processing by utilizing an 

attention-based approach [19]. Unlike recurrent 

models, it captures long-range dependencies in 

parallel, making it efficient for large-scale training 

and effective in modelling complex contexts. Its core 

strength lies in the self-attention mechanism, which 

evaluates the importance of each element in relation 

to others by constructing query, key, and value 

vectors from the input, and then computing attention 

weights to form new sequence representations. 
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Figure 2 Transformer model architecture 

The architecture consists of encoder and decoder 

stacks, each built from multi-head self-attention, 

feed-forward layers, residual connections, and 

normalization, ensuring stable training and robust 

performance [20]. Initially, discrete inputs are 

transformed into embeddings 

𝑥𝑒𝑚𝑏𝑒𝑑 = 𝑥 ⋅ 𝑊𝑒𝑚𝑏𝑒𝑑 
(7) 

with positional encodings added to incorporate 

sequence order 

𝑃𝐸(𝑝𝑜𝑠, 2𝑖) = 𝑠𝑖𝑛 (
𝑝𝑜𝑠

10000
2𝑖
𝑑

) 
(8) 

𝑃𝐸(𝑝𝑜𝑠, 2𝑖 + 1) = 𝑐𝑜𝑠 (
𝑝𝑜𝑠

10000
2𝑖
𝑑

) 
(9) 

𝑧0 = 𝑥 + 𝑃𝐸 (10) 

In self-attention, inputs are projected into queries, 

keys, and values 

𝑄 = 𝑧 ⋅ 𝑊𝑞 , 𝐾 = 𝑧 ⋅ 𝑊𝑘 , 𝑉 = 𝑧 ⋅ 𝑊𝑣  (11) 

The attention scores are computed with scaled dot-

product attention 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘
)𝑉 

(12) 

and extended to multiple heads 

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉)
= 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, … , ℎ𝑒𝑎𝑑ℎ ⋅ 𝑊𝑜) 

(13) 

Residual connections and normalization stabilize 

outputs 

𝑧1 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑧0 +𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉)) (14) 

followed by a feed-forward network 

𝐹𝐹𝑁(𝑧) = 𝑅𝑒𝐿𝑈(𝑧 ⋅ 𝑊1 + 𝑏1) ⋅ 𝑊2 + 𝑏2 (15) 

𝑧2 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑧1 + 𝐹𝐹𝑁(𝑧1)) (16) 

Owing to its efficiency in capturing long-term 

dependencies, the Transformer has become a leading 

architecture across fields, including spatio-temporal 

forecasting tasks [21]. 

Data.  This study utilizes ERA5 reanalysis data to 

represent various atmospheric parameters involved in 

daily rainfall prediction over the Jakarta area for the 

period 2001–2021, and the data coverage is illustrated 

in Figure 3. The meteorological variables analyzed 

include total precipitation as the target and 11 

atmospheric predictors obtained from ERA5 and 

NOAA, as summarized in Table 1. 

Table 1 Meteorological variables used in this study 

Variable Unit  Level 

Total Precipitation 𝑚𝑚/ℎ 

 

- 

VIMD 𝑘𝑔/𝑚2 - 

Dew Point 

Temperature 
𝐾 Surface 

TCRW 𝑘𝑔/𝑚2 - 

TCLW 𝑘𝑔/𝑚2 - 

Specific Humidity 𝑘𝑔/𝑘𝑔 500, 850 hpa 

Geopotential 

Height 
𝑚2/𝑠2 500 hpa 

Zonal Wind 

Component (U) 
𝑚/𝑠2 10 m 

Meridional Wind 

Component (V) 
𝑚/𝑠2 10 m, 600 hpa 

Temperature 𝐾 Surface 

Vertical Velocity 𝑝𝑎/𝑠 200, 500, 850 

and 925 hpa 

Mean Sea Level 

Pressure (MSLP) 
𝑝𝑎 Surface 

OLR 𝑤/𝑚2 - 
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Figure 3 Study area 

Workflow. Predictor variables were evaluated using 

SHAP (SHapley Additive exPlanations) to measure 

their contribution to rainfall prediction [22], and the 

ten most influential were selected for further analysis 

as shown in Figure 4. Although deep learning models 

are less sensitive to multicollinearity due to their 

internal representation learning, this limitation was 

noted when interpreting variable importance, 

particularly for VIMD. Therefore, a univariate VIMD 

experiment was included to isolate its contribution. 

The data were then pre-processed by spatially 

averaging values over Jakarta, applying 5- and 3-day 

moving averages, transforming rainfall with log1p to 

stabilize variance [23], and normalizing predictors 

with MinMax Scaler. For tropical waves variables 

(MJO, Kelvin, ER, MRG and TD), spatial averaging 

was also applied to obtain a regional-scale 

representation of large-scale convective modulation. 

This approach was chosen to maintain consistent 

input dimensionality and to keep computational 

complexity manageable for the daily prediction task, 

acknowledging that some spatial detail is sacrificed 

but remains appropriate for a city-scale analysis. The 

dataset was split into training (2001–2018) and 

testing (2019–2021). 

For model development, 85.7% of the data was used 

for training and 14.3% for testing. The LSTM 

architecture included four LSTM layers (960 units in 

total) and three Dense layers, while the Transformer 

comprised ten encoder layers with an input dimension 

of 128 and a model dimension of 512. Both models 

were trained under varying hyperparameters, as 

shown in Table 2. 

 

Table 2. Hyperparameter tuning 

Hyperparameter 
Amount 

LSTM Transformer 

Batch size 32 64 

Dropout 0.1 0.3 

Learning rate 0.001 0.00001 

Epochs 100 100 

Optimizer Adam AdamW 

The Adam optimizer was chosen for model training 

due to its adaptive moment estimation, which 

integrates first and second-order gradient moments, 

facilitating rapid and stable convergence in the noisy 

and non-stationary optimization environments 

characteristic of meteorological time series. Previous 

assessments indicate that Adam is resilient to 

stochastic gradient fluctuations and attains superior 

convergence rates compared to numerous 

conventional optimizers, rendering it particularly 

appropriate for deep architectures like LSTM and 

Transformer [24], [25], [26]. While adaptive 

optimizers may vary from SGD regarding 

generalization performance, Adam offers an effective 

equilibrium between convergence velocity and 

training stability, which is crucial across the diverse 

architectures and hyperparameter settings employed 

in this research. Model performance was assessed 

with R², RMSE, and Pearson correlation, providing a 

comprehensive evaluation of accuracy, error 

magnitude, and temporal consistency with observed 

rainfall [27]. 

 

Figure 4 Variable contribution assessment using 

SHAP 

3. Result and Discussion 

The SHAP analysis in Figure 5 highlights VIMD as 

the most influential predictor in rainfall forecasting, 

followed by d2m, OLR, and TCRW, while 

temperature and U10 contribute minimally. Variables 

linked to large-scale circulation and vertical 

processes, such as w500 and TCLW, also provide 

meaningful but comparatively smaller contributions. 

These findings emphasize the dominant role of 

atmospheric moisture and radiative processes in 

governing rainfall variability, underscoring the 
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importance of prioritizing moisture-sensitive 

predictors in rainfall prediction models. 

The Pearson correlation analysis presented in Figure 

6 indicates that VIMD exhibits the strongest 

correlation with daily rainfall (–0.83) and shows 

substantial associations with other atmospheric 

variables, including TCLW, TCRW, w500, q500, and 

q850. These findings suggest that VIMD captures a 

significant portion of rainfall variability; however, its 

strong interdependence with other predictors raises 

concerns of potential multicollinearity in multivariate 

models. Therefore, a univariate approach is employed 

to isolate and evaluate its specific contribution. 

Physically, vertical moisture flux is fundamental to 

convective rainfall as it transports latent energy from 

the lower to the upper troposphere, thereby sustaining 

condensation, cloud formation, and the initiation of 

convection [28], [29]. Recent studies further 

emphasize its pivotal role in the context of climate 

change, where enhanced vertical moisture transport 

intensifies extreme precipitation events by 

redistributing humidity and strengthening boundary 

layer dynamics [30], [31].  

 
Figure 5 SHAP-Based Analysis of selected variable 

contributions 

 

 
Figure 6 Pearson correlation matrix of variables

 
(a)      (d) 

 
(b)      (e) 

 
(c)      (f) 

Figure 7 Performance of LSTM (a–c) and Transformer (d–f) with 5-day smoothing, 3-day smoothing, and no 

smoothing across lags 1–10. 
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Model performance across different lag 

configurations. Figure 7 demonstrates that applying 

five-day smoothing as a preprocessing step 

consistently improves predictive performance in both 

LSTM and Transformer models. For the LSTM this 

approach yields the highest R2 and correlation values 

alongside the lowest RMSE particularly at shorter 

lags. This indicates an enhanced ability to capture 

temporal patterns once high-frequency noise is 

reduced. The Transformer shows a comparable trend 

maintaining R2 values between 0.87 and 0.88 and 

correlations above 0.93 across most lags. It 

experiences less performance degradation than the 

LSTM when smoothing is omitted. These findings 

highlight the critical importance of preprocessing 

quality with five-day smoothing emerging as an 

essential procedure to improve both stability and 

accuracy in daily rainfall prediction. Under the five-

day moving average condition the LSTM shows 

superior short-lag accuracy reaching an R2 of 0.94 

with an RMSE as low as 4.81 at lag 3 and correlations 

up to 0.97 at lags 1–3. However, its performance 

declines markedly at longer lags with R2 dropping to 

0.83 and RMSE rising to 7.76. In contrast the 

Transformer maintains stable accuracy across all lags 

exhibiting R2 values of 0.87–0.88 RMSE between 

6.54 and 6.96 and correlations around 0.93–0.94. 

These results suggest that while the LSTM excels at 

capturing short-term dependencies via its gating 

mechanisms its predictive capability diminishes with 

longer input sequences due to memory limitations and 

weakened atmospheric signals. Conversely the 

Transformer leverages self-attention to preserve 

information over extended sequences making it more 

robust and reliable for rainfall prediction across 

longer lag horizons despite slightly lower accuracy at 

short lags. 

Figure 8 presents a comparison between predicted 

and observed rainfall highlighting the critical role of 

smoothing in daily rainfall preprocessing. Without 

smoothing both LSTM and Transformer models show 

substantial limitations in capturing rapid day-to-day 

variability and produce overly flat predictions that fail 

to represent rainfall extremes. This aspect is 

particularly relevant for disaster mitigation such as 

flood risk management. The limitation is reflected in 

low R2 values of 0.4462 for LSTM and 0.3058 for 

Transformer. Introducing moving averages with 

three- and five-day windows substantially improves 

predictive performance. With a three-day smoothing 

window predictions align better with observed trends 

though discrepancies remain during extreme events. 

This increases R2 to 0.8613 for LSTM and 0.8557 for 

Transformer. The greatest improvement occurs with 

five-day smoothing where predictions become 

smoother and more consistent effectively capturing 

both extreme peaks and low-rainfall periods. Under 

this condition R2 rises to 0.9358 for LSTM and 

0.8714 for Transformer. These results confirm that 

five-day smoothing is an effective preprocessing 

strategy for enhancing predictive accuracy in highly 

dynamic rainfall datasets. 

 
             (a)      (b) 

 
(c) 

Figure 8. Daily rainfall predictions of LSTM and Transformer over the first 100 test days at a 3-day lag with 

different preprocessing (no smoothing, 3-day, 5-day)
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(a)          (b) 

 
(c) 

Figure 9. Performance comparison of LSTM and Transformer with and without the Tropical Wave (TW): light 

yellow = LSTM without TW, light green = LSTM with TW, turquoise= Transformer without TW, dark purple = 

Transformer with TW. (a) R², (b) RMSE, (c) r 

 
(a)           (b) 

 
(c) 

Figure 10. Performance comparison of LSTM and Transformer with 10 predictors (light yellow = LSTM, 

turquoise= Transformer) and with only VIMD (light green = LSTM, purple = Transformer). (a) R², (b) RMSE, 

(c) r 

Impact of tropical wave variables on multivariate 

prediction skill. Figure 9 indicates that incorporating 

Tropical Wave (TW) variables does not lead to a 

substantial improvement in model performance. For 

the LSTM the addition of TW is associated with a 

slight decline in predictive accuracy at longer lags. 

This is reflected by higher RMSE values and a 

reduction in R2, which decreases to 0.62 at lag-10 

compared to 0.85 without TW. This suggests that the 

LSTM is more sensitive to TW inclusion likely due 

to increased feature complexity or noise introduction. 

By contrast the Transformer exhibits relatively stable 

behaviour with R2, RMSE, and correlation values 

showing no marked differences between models with 

and without TW. This indicates a stronger ability to 

filter and manage additional predictors although their 

contribution remains limited. The modest impact of 

TW may be attributed to the loss of spatial 

information during preprocessing since band-pass 

filtered TW fields that originally capture propagating 

structures across longitude and latitude are reduced to 

regional averages. This diminishes their dynamical 
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signals. As a result TW variables function more as 

simplified regional indices rather than full 

representations of tropical wave activity which 

reduces their predictive value and explains the 

marginal improvements observed in both models. 

Comparison between multivariate and univariate 

prediction performance. Figure 10 demonstrates 

that using VIMD as a single predictor provides 

notable predictive skill, especially for the LSTM 

model. Across nearly all lag intervals the LSTM 

achieves higher R2 values between 0.76 and 0.88 than 

the Transformer. Its best performance is observed at 

lag-10. This result confirms that VIMD contains 

substantial predictive information and is robust 

enough to support rainfall forecasting without 

additional atmospheric variables. In contrast, the 

Transformer produces slightly lower but more 

stable R2 values across the lag spectrum. This 

indicates a trade-off between stability and maximum 

accuracy. Further evaluation of RMSE and Pearson 

correlation (r) reinforces this distinction. The LSTM 

achieves its lowest RMSE of 6.44 with correlations 

up to 0.95. The Transformer maintains RMSE above 

7.6 with correlations in the range of 0.90 to 0.91. 

Collectively these findings highlight VIMD as an 

effective standalone predictor with the LSTM 

architecture showing stronger capability to capture 

temporal rainfall dynamics while the Transformer 

offers more consistent but comparatively lower 

predictive accuracy under univariate conditions. 

4. Conclusion 

Deep learning models for daily rainfall prediction 

were developed using LSTM and Transformer 

architectures with both univariate and multivariate 

inputs. Results show that LSTM performs better for 

short-lag forecasts, especially with five-day 

smoothing, while the Transformer remains more 

stable over longer lags. Pre-processing, particularly 

five-day smoothing, proved crucial for improving 

accuracy. Adding tropical wave variables offered 

little benefit, as spatial propagation information was 

lost after averaging, with the LSTM being more 

sensitive to this complexity than the Transformer. 

Meanwhile, Vertically Integrated Moisture 

Divergence (VIMD) emerged as a strong single 

predictor, effectively capturing rainfall variability in 

line with its role in tropical precipitation processes. 

Suggestion 

The developed deep learning models demonstrate 

considerable potential for daily rainfall prediction. 

The LSTM architecture is particularly effective at 

shorter lags, as it captures short-term temporal 

dependencies with higher precision. In contrast, the 

Transformer exhibits more stable performance across 

longer lag horizons, maintaining consistent predictive 

skill. Future studies may investigate hybrid 

frameworks that integrate the advantages of both 

architectures to further improve accuracy and 

robustness. 
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