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ABSTRACT

In this study, we developed and evaluated daily rainfall prediction models using deep learning architectures,
specifically comparing Long Short-Term Memory (LSTM) and Transformer models with various atmospheric
predictors. The results showed that the LSTM vyielded higher accuracy at short-term lags, with R2 reaching 0.94
and RMSE as low as 4.81 at lag-3, while the Transformer demonstrated more consistent performance across all
lags, maintaining stable R2 values around 0.87-0.88. Applying a 5-day smoothing pre-processing step significantly
enhanced prediction quality for both models by reducing high-frequency noise in the raw data, particularly
benefiting the LSTM, which was more sensitive to such fluctuations. Adding tropical wave variables did not
substantially improve the performance of the model and could reduce LSTM accuracy at longer lags due to
increased input complexity. In contrast, the Transformer remained relatively robust to these variations. Among all
predictors, the vertically integrated moisture flux divergence (VIMD) stood as the most important predictor,
emphasizing its physical relevance to precipitation processes in convective and monsoonal regions. These findings
highlighted that while the LSTM excelled at capturing short-term temporal dynamics, the Transformer offered a
stable framework for longer-range rainfall forecasting.
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1. Introduction troposphere [1], [2]. The city’s susceptibility is
) ) further heightened by its flat topography, dense
Ind({“eS‘a’S C_hmate shaped by the lush embr_ace. of urbanization, and coastal proximity [3]. Additionally,
tropical  rainforests, presents a fascinating tropical  waves-including the  Madden-Julian
combination of year-round stable temperatures and Oscillation, Mixed Rossby-Gravity waves, Kelvin
consistentl_y high rainfall influenced by vast waves, Equatorial Rossby waves, and Tropical
atmospheric systems such as monsoons, Hadley and Depressions ~ significantly influence convection
Walker circulations, and global phenomena like the dynamics and rainfall distribution [4], [5], [6], [7].
El Nifio—Southern Oscillation. However, across its Such influences have also been demonstrated in
many islands, each region’s weather exhibits a previous studies, where convectively coupled
distinctive pattern molded by unique geography and equatorial waves were shown to modulate rainfall
local atmospheric dynamics, resulting in remarkable extremes in Java and surrounding regions,
variations in rainfall intensity, frequency, and underscoring their relevance to rainfall variability in
duration. the Indonesian maritime continent [8].
As Indonesia’s economic hub, Jakarta is particularly Rainfall prediction remains a major challenge in
vulnerable to extreme weather events, especially meteorology due to its discrete nature and high
heavy rainfall that often triggers flooding. This variability across space and time, with rainfall
vulnerability is driven by complex interactions intensities changing within minutes and distributions
among atmospheric factors such as humidity, sea driven by both local and global atmospheric
surface temperature, surface pressure, and vertical dynamics. Numerical Weather Prediction (NWP)
and horizontal motions in the lower to mid- models have advanced in assimilating observational
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and physical parameters from global to regional
scales to produce more systematic forecasts;
however, they still face limitations in representing
small-scale factors that influence localized extreme
events and maintaining accuracy over very short or
extended timeframes [9], [10]. These limitations
highlight the need for complementary data-driven
approaches capable of capturing nonlinear and multi-
scale variability in daily rainfall. In recent years,
machine learning methods such as Long Short-Term
Memory (LSTM) networks have garnered attention
for their ability to capture both short- and long-term
temporal dependencies and to address the vanishing
gradient problem [11], [12], [13], [14]. Attention-
based models, like the Transformer, utilize self-
attention to process entire inputs in parallel,
efficiently capturing long-range dependencies while
accelerating training, thus showing strong potential
for complex daily rainfall forecasting influenced by
dynamic atmospheric factors [15]. This study aims to
address these challenges by developing and
evaluating reliable daily rainfall prediction models
that leverage deep learning architectures based on
sequential models (LSTM) and attention mechanisms
(Transformer), using atmospheric variables as
predictors.

2. Methods

LSTM model. Long Short-Term Memory (LSTM) is
a neural network architecture designed to capture
temporal dependencies in sequential data. Its main
strength lies in preserving long-term patterns that are
often lost in conventional models, making it well-
suited for tasks such as rainfall prediction[16], [17].
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Figure 1 LSTM network architecture

LSTM employs a gated mechanism-consisting of
input, forget, and output gates-to regulate the storage,
updating, and removal of information in its memory
cells. Within each cell, sigmoid layers guide the
gating process, while a tanh activation function
updates the cell state. According to [18], the forget
gate determines which information from the previous

state should be discarded, mathematically expressed
in the following equation. The forget gate determines
which information from the previous cell state should
be discarded, as expressed in Eq. (1)

fe=o(Ws - [he — 1, %] + by) @

The input gate controls the fraction of new
information allowed into the memory, formulated in

Ed. (2)
ip =oW; - [he =1, %] + by) (2)

A candidate cell state is generated to represent
possible new content, defined in Eg. (3)

Ce = tanh(W, - [he — 1, x,] + b)) (3)

The cell state is then updated by merging past
memory with the candidate state, as illustrated in Eq.

(4)
Ct:ft*Ct—l-l'it*Ct (4)

The output gate determines which portion of the
updated cell state contributes to the hidden state, as
given in Eq. (5)

o = (W, - [hy — 1, %] + by) (5)

Finally, the hidden state is updated based on the
output gate and the current cell state, as described in

Eq. (6)
h’t = Ot * tanh(Ct) (6)

Transformer model. The Transformer is a deep
learning architecture designed to overcome the
limitations of sequential processing by utilizing an
attention-based approach [19]. Unlike recurrent
models, it captures long-range dependencies in
parallel, making it efficient for large-scale training
and effective in modelling complex contexts. Its core
strength lies in the self-attention mechanism, which
evaluates the importance of each element in relation
to others by constructing query, key, and value
vectors from the input, and then computing attention
weights to form new sequence representations.
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Figure 2 Transformer model architecture

The architecture consists of encoder and decoder
stacks, each built from multi-head self-attention,
feed-forward layers, residual connections, and
normalization, ensuring stable training and robust
performance [20]. Initially, discrete inputs are
transformed into embeddings

Xembea = X * Wempea @)

with positional encodings added to incorporate
sequence order

) pos 8
PE(pos, 2;) = sin —
100004
pos ©)
PE(pos,2; + 1) = cos 7
10000a
zy =x + PE (10)

In self-attention, inputs are projected into queries,
keys, and values

Q=z-W,K=z-W,V=2z-W, (11)

The attention scores are computed with scaled dot-
product attention

. (QKT) 12)
Attention(Q,K,V) = softmax(—|V

Jax

and extended to multiple heads

MultiHead (Q,K,V) (13)
= Concat(head,, ..., heady - W,)

Residual connections and normalization stabilize
outputs

zy = LayerNorm(zy + MultiHead(Q,K,V)) (14)

followed by a feed-forward network
FFN(Z) = ReLU(Z . Wl + bl) . WZ + bz (15)
z, = LayerNorm(z, + FFN(z,)) (16)

Owing to its efficiency in capturing long-term
dependencies, the Transformer has become a leading
architecture across fields, including spatio-temporal
forecasting tasks [21].

Data. This study utilizes ERA5 reanalysis data to
represent various atmospheric parameters involved in
daily rainfall prediction over the Jakarta area for the
period 2001-2021, and the data coverage is illustrated
in Figure 3. The meteorological variables analyzed
include total precipitation as the target and 11
atmospheric predictors obtained from ERAS5 and
NOAA, as summarized in Table 1.

Table 1 Meteorological variables used in this study

Variable Unit Level

Total Precipitation mm/h -

VIMD kg/m? -

Dew Point K Surface

Temperature

TCRW kg/m? -

TCLW kg/m? -

Specific Humidity kg/kg 500, 850 hpa

Geopotential m?/s? 500 hpa

Height

Zonal Wind m/s? 10m

Component (U)

Meridional Wind  m/s? 10 m, 600 hpa

Component (V)

Temperature K Surface

Vertical Velocity pa/s 200, 500, 850
and 925 hpa

Mean Sea Level pa Surface

Pressure (MSLP)

OLR w/m? -
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Figure 3 Study area

Workflow. Predictor variables were evaluated using
SHAP (SHapley Additive exPlanations) to measure
their contribution to rainfall prediction [22], and the
ten most influential were selected for further analysis
as shown in Figure 4. Although deep learning models
are less sensitive to multicollinearity due to their
internal representation learning, this limitation was
noted when interpreting variable importance,
particularly for VIMD. Therefore, a univariate VIMD
experiment was included to isolate its contribution.
The data were then pre-processed by spatially
averaging values over Jakarta, applying 5- and 3-day
moving averages, transforming rainfall with loglp to
stabilize variance [23], and normalizing predictors
with MinMax Scaler. For tropical waves variables
(MJO, Kelvin, ER, MRG and TD), spatial averaging
was also applied to obtain a regional-scale
representation of large-scale convective modulation.
This approach was chosen to maintain consistent
input dimensionality and to keep computational
complexity manageable for the daily prediction task,
acknowledging that some spatial detail is sacrificed
but remains appropriate for a city-scale analysis. The
dataset was split into training (2001-2018) and
testing (2019-2021).

For model development, 85.7% of the data was used
for training and 14.3% for testing. The LSTM
architecture included four LSTM layers (960 units in
total) and three Dense layers, while the Transformer
comprised ten encoder layers with an input dimension
of 128 and a model dimension of 512. Both models
were trained under varying hyperparameters, as
shown in Table 2.

Table 2. Hyperparameter tuning

Hyperparameter Amount

LSTM Transformer
Batch size 32 64
Dropout 0.1 0.3
Learning rate 0.001 0.00001
Epochs 100 100
Optimizer Adam Adamw

The Adam optimizer was chosen for model training
due to its adaptive moment estimation, which
integrates first and second-order gradient moments,
facilitating rapid and stable convergence in the noisy
and non-stationary optimization environments
characteristic of meteorological time series. Previous
assessments indicate that Adam is resilient to
stochastic gradient fluctuations and attains superior
convergence rates compared to  numerous
conventional optimizers, rendering it particularly
appropriate for deep architectures like LSTM and
Transformer [24], [25], [26]. While adaptive
optimizers may vary from SGD regarding
generalization performance, Adam offers an effective
equilibrium between convergence velocity and
training stability, which is crucial across the diverse
architectures and hyperparameter settings employed
in this research. Model performance was assessed
with R2, RMSE, and Pearson correlation, providing a
comprehensive evaluation of accuracy, error
magnitude, and temporal consistency with observed
rainfall [27].

Overall Features Importance by SHAP

Figure 4 Variable contribution assessment using
SHAP

3. Result and Discussion

The SHAP analysis in Figure 5 highlights VIMD as
the most influential predictor in rainfall forecasting,
followed by d2m, OLR, and TCRW, while
temperature and U10 contribute minimally. Variables
linked to large-scale circulation and vertical
processes, such as w500 and TCLW, also provide
meaningful but comparatively smaller contributions.
These findings emphasize the dominant role of
atmospheric moisture and radiative processes in
governing rainfall variability, underscoring the
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importance  of  prioritizing  moisture-sensitive
predictors in rainfall prediction models.

The Pearson correlation analysis presented in Figure
6 indicates that VIMD exhibits the strongest
correlation with daily rainfall (-0.83) and shows
substantial associations with other atmospheric
variables, including TCLW, TCRW, w500, 4500, and
0850. These findings suggest that VIMD captures a
significant portion of rainfall variability; however, its
strong interdependence with other predictors raises
concerns of potential multicollinearity in multivariate

Overall Features Importance by SHAP
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Figure 5 SHAP-Based Analysis of selected variable
contributions
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models. Therefore, a univariate approach is employed
to isolate and evaluate its specific contribution.
Physically, vertical moisture flux is fundamental to
convective rainfall as it transports latent energy from
the lower to the upper troposphere, thereby sustaining
condensation, cloud formation, and the initiation of
convection [28], [29]. Recent studies further
emphasize its pivotal role in the context of climate
change, where enhanced vertical moisture transport
intensifies extreme  precipitation events by
redistributing humidity and strengthening boundary
layer dynamics [30], [31].
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Figure 7 Performance of LSTM (a—c) and Transformer (d—f) with 5-day smoothing, 3-day smoothing, and no
smoothing across lags 1-10.
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Model performance across different lag
configurations. Figure 7 demonstrates that applying
five-day smoothing as a preprocessing step
consistently improves predictive performance in both
LSTM and Transformer models. For the LSTM this
approach yields the highest R? and correlation values
alongside the lowest RMSE particularly at shorter
lags. This indicates an enhanced ability to capture
temporal patterns once high-frequency noise is
reduced. The Transformer shows a comparable trend
maintaining R? values between 0.87 and 0.88 and
correlations above 0.93 across most lags. It
experiences less performance degradation than the
LSTM when smoothing is omitted. These findings
highlight the critical importance of preprocessing
quality with five-day smoothing emerging as an
essential procedure to improve both stability and
accuracy in daily rainfall prediction. Under the five-
day moving average condition the LSTM shows
superior short-lag accuracy reaching an R? of 0.94
with an RMSE as low as 4.81 at lag 3 and correlations
up to 0.97 at lags 1-3. However, its performance
declines markedly at longer lags with R? dropping to
0.83 and RMSE rising to 7.76. In contrast the
Transformer maintains stable accuracy across all lags
exhibiting R? values of 0.87-0.88 RMSE between
6.54 and 6.96 and correlations around 0.93-0.94.
These results suggest that while the LSTM excels at
capturing short-term dependencies via its gating
mechanisms its predictive capability diminishes with
longer input sequences due to memory limitations and
weakened atmospheric signals. Conversely the

Prediction vs Actual (No Smoothing - Testing)

8

Rainfall (mm)

Rainfall (mm)

Transformer leverages self-attention to preserve
information over extended sequences making it more
robust and reliable for rainfall prediction across
longer lag horizons despite slightly lower accuracy at
short lags.

Figure 8 presents a comparison between predicted
and observed rainfall highlighting the critical role of
smoothing in daily rainfall preprocessing. Without
smoothing both LSTM and Transformer models show
substantial limitations in capturing rapid day-to-day
variability and produce overly flat predictions that fail
to represent rainfall extremes. This aspect is
particularly relevant for disaster mitigation such as
flood risk management. The limitation is reflected in
low R? values of 0.4462 for LSTM and 0.3058 for
Transformer. Introducing moving averages with
three- and five-day windows substantially improves
predictive performance. With a three-day smoothing
window predictions align better with observed trends
though discrepancies remain during extreme events.
This increases R? to 0.8613 for LSTM and 0.8557 for
Transformer. The greatest improvement occurs with
five-day smoothing where predictions become
smoother and more consistent effectively capturing
both extreme peaks and low-rainfall periods. Under
this condition R?rises to 0.9358 for LSTM and
0.8714 for Transformer. These results confirm that
five-day smoothing is an effective preprocessing
strategy for enhancing predictive accuracy in highly
dynamic rainfall datasets.
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Figure 8. Daily rainfall predictions of LSTM and Transformer over the first 100 test days at a 3-day lag with
different preprocessing (no smoothing, 3-day, 5-day)
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Figure 9. Performance comparison of LSTM and Transformer with and without the Tropical Wave (TW): light
yellow = LSTM without TW, light green = LSTM with TW, turquoise= Transformer without TW, dark purple =
Transformer with TW. (a) R, (b) RMSE, (¢c) r
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Figure 10. Performance comparison of LSTM and Transformer with 10 predictors (light yellow = LSTM,
turquoise= Transformer) and with only VIMD (light green = LSTM, purple = Transformer). (a) R?, (b) RMSE,

Impact of tropical wave variables on multivariate
prediction skill. Figure 9 indicates that incorporating
Tropical Wave (TW) variables does not lead to a
substantial improvement in model performance. For
the LSTM the addition of TW is associated with a
slight decline in predictive accuracy at longer lags.
This is reflected by higher RMSE values and a
reduction in R?, which decreases to 0.62 at lag-10
compared to 0.85 without TW. This suggests that the
LSTM is more sensitive to TW inclusion likely due
to increased feature complexity or noise introduction.

@©r
By contrast the Transformer exhibits relatively stable
behaviour with R?, RMSE, and correlation values
showing no marked differences between models with
and without TW. This indicates a stronger ability to
filter and manage additional predictors although their
contribution remains limited. The modest impact of
TW may be attributed to the loss of spatial
information during preprocessing since band-pass
filtered TW fields that originally capture propagating
structures across longitude and latitude are reduced to
regional averages. This diminishes their dynamical

Leveraging Sequential and Attention-based..........ccocecevvriveeeeininecienieirece e

<eeeeeeeennAkhdan Fadhilah Yaskur Hardiano, et. al
129



signals. As a result TW variables function more as
simplified regional indices rather than full
representations of tropical wave activity which
reduces their predictive value and explains the
marginal improvements observed in both models.

Comparison between multivariate and univariate
prediction performance. Figure 10 demonstrates
that using VIMD as a single predictor provides
notable predictive skill, especially for the LSTM
model. Across nearly all lag intervals the LSTM
achieves higher R?values between 0.76 and 0.88 than
the Transformer. Its best performance is observed at
lag-10. This result confirms that VIMD contains
substantial predictive information and is robust
enough to support rainfall forecasting without
additional atmospheric variables. In contrast, the
Transformer produces slightly lower but more
stable R? values across the lag spectrum. This
indicates a trade-off between stability and maximum
accuracy. Further evaluation of RMSE and Pearson
correlation (r) reinforces this distinction. The LSTM
achieves its lowest RMSE of 6.44 with correlations
up to 0.95. The Transformer maintains RMSE above
7.6 with correlations in the range of 0.90 to 0.91.
Collectively these findings highlight VIMD as an
effective standalone predictor with the LSTM
architecture showing stronger capability to capture
temporal rainfall dynamics while the Transformer
offers more consistent but comparatively lower
predictive accuracy under univariate conditions.

4. Conclusion

Deep learning models for daily rainfall prediction
were developed using LSTM and Transformer
architectures with both univariate and multivariate
inputs. Results show that LSTM performs better for
short-lag forecasts, especially with five-day
smoothing, while the Transformer remains more
stable over longer lags. Pre-processing, particularly
five-day smoothing, proved crucial for improving
accuracy. Adding tropical wave variables offered
little benefit, as spatial propagation information was
lost after averaging, with the LSTM being more
sensitive to this complexity than the Transformer.
Meanwhile,  Vertically  Integrated  Moisture
Divergence (VIMD) emerged as a strong single
predictor, effectively capturing rainfall variability in
line with its role in tropical precipitation processes.

Suggestion

The developed deep learning models demonstrate
considerable potential for daily rainfall prediction.
The LSTM architecture is particularly effective at
shorter lags, as it captures short-term temporal

dependencies with higher precision. In contrast, the
Transformer exhibits more stable performance across
longer lag horizons, maintaining consistent predictive
skill. Future studies may investigate hybrid
frameworks that integrate the advantages of both
architectures to further improve accuracy and
robustness.
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